自动控制原理

朱永甫 宋丽琴 主编
黄绳正 副主编
王凤华 严俐婉 参编
内容简介

本书是依据应用型本科院校自动控制原理课程教学要求编写的。本书覆盖了经典控制理论的基本内容，重点对线性定常系统的时域分析法、根轨迹法和频域分析法作了全面的阐述，结合工程实际引入了MATLAB运行环境及其编程内容。本书内容包括自动控制系统的基本概念、控制系统的数学模型、控制系统的时域分析法、控制系统的根轨迹法、控制系统的频域分析法和控制系统分析与校正MATLAB语言的使用、控制系统的MATLAB语言及其应用、控制系统的MATLAB语言及其应用、控制系统的MATLAB语言及其应用。

本书精选了大量有关建筑环境、建筑设备、建筑电气、建筑给排水等控制系统的实例，自成体系，内容精练，重点突出，实用性强，充分结合工程案例进行理论讲解、分析。书中大量例子都使用MATLAB实现，实用性强。书后还附有常用函数的拉普拉斯变换对照表、常用函数的MATLAB语言及其应用、控制系统的MATLAB语言及其应用、控制系统的MATLAB语言及其应用、控制系统的MATLAB语言及其应用。

本书可作为工科院校土木工程类、建筑环境与能源应用工程类、建筑给排水科学与工程类、电气工程类、自动化设计类各专业的本科和非控制类硕士研究生的教材，也可作为机电类、机械工程类、计算机应用工程等相近专业的本科生学习控制原理的教材和参考书，还可供有关从事控制工程应用的技术人员参考。

未经许可，不得以任何方式复制或抄袭本书之部分或全部内容。
版权所有，侵权必究。

图书在版编目（CIP）数据
自动控制原理/朱永甫，宋丽琴主编. —北京：电子工业出版社，2018.2
普通高等教育土木类“十三五”规划教材
ISBN 978-7-121-32755-1
Ⅰ．①自… Ⅱ. ①朱…②宋… Ⅲ. ①自动控制理论—高等学校—教材 Ⅳ. ①TP13
中国版本图书馆CIP数据核字(2017)第232219号

责任编辑：郭穗娟
印刷：
装订：
出版发行：电子工业出版社
北京市海淀区万寿路173信箱 邮编100036
开本：787×1092 1/16 印张：15.75 字数：375千字
版本：2018年2月第1版
印次：2018年2月第1次印刷
定价：49.80元

凡所购买电子工业出版社图书有缺损问题，请向购买书店调换。若书店售缺，请与本社发行部联系，联系及邮寄电话：（010）88254888，88258888。
质量投诉请发邮件至zlts@phei.com.cn，盗版侵权举报请发邮件至dbqq@phei.com.cn。
本书咨询联系方式：（010）88254502，guosj@phei.com.cn。
前言

根据教育部、国家发展改革委、财政部《关于引导部分地方普通本科高校向应用型转变的意见》教发【2015】7号和《关于以就业为导向深化高等职业教育改革的若干意见》的精神，按照普通本科高校向应用型转变的人才培养目标及教育特点，结合编者多年从事教学的经验编写而成。其编写特点是以必要和够用为准则，强化应用为重点。书中简化了对一些理论的推导与证明，对实际控制系统设计较实用的内容列举了较多的例题，系统讲述了自动控制原理中经典控制理论部分的基本知识和基本设计技能，把MATLAB编程适时引入并穿插到各个章节，从而避免学习控制理论过程中的抽象空洞。

全书共8章，主要内容包括自动控制系统的基本概念、控制系统的数学模型、控制系统的时域分析法、控制系统的根轨迹法、控制系统的频域分析法、控制系统的分析与校正、离散控制系统、MATLAB语言及其仿真试验。本书自成体系，内容精练，重点突出，适用性强，重在基础理论的内容讲解、案例分析与计算。

本书的特点是结合建筑环境与能源应用工程、建筑给排水工程与科学、建筑电气与智能化等专业特征，结合具体工程设计案例进行全面、系统的介绍，尽量简化理论推导，注重实用性和可操作性。每章开头提炼了学习要求和重点掌握的内容，章后附有总结和注意事项；书中例题都使用MATLAB进行解题、分析，实用性和应用性强。

全书由朱永甫、宋丽琴担任主编，黄绳正担任副主编，王凤华、严俐婉参编。集美大学李栋、闽南理工学院李伙穆教授担任主审，他们在审核过程中提出了很多宝贵的建设性意见，主编在统稿时均予以采纳。本书第1、3、4章由闽南理工学院宋丽琴助理研究员编写，第2章和附录由闽南理工学院黄绳正助理研究员编写，第5～8章由闽南理工学院朱永甫副教授编写，全书图表由朱永甫、宋丽琴绘制，全书源程序由朱永甫副教授编制，闽南理工学院王凤华、严俐婉、王利、王伟参与了全书的校对。

因编者水平有限，文中不足之处敬请指正。

编者
2017年10月
第 5 章 控制系统的频域分析法

5.1 频率特性的基本知识
5.1.1 频率特性的物理概念
5.1.2 频率特性的定义

5.2 频率特性的图示
5.2.1 奈奎斯特图
5.2.2 伯德图
5.2.3 尼柯尔斯图

5.3 典型环节的频率特性
5.3.1 比例环节的频率特性
5.3.2 积分环节的频率特性
5.3.3 惯性环节的频率特性
5.3.4 振荡环节的频率特性
5.3.5 微分环节的频率特性
5.3.6 延迟环节的频率特性

5.4 开环系统频率特性图绘制
5.4.1 开环系统伯德图的绘制
5.4.2 最小相位系统和非最小相位系统

5.5 频率域稳定性分析
5.5.1 奈奎斯特稳定性判据
5.5.2 控制系统的稳定裕量

5.6 开环频域指标与时域指标之间的关系
5.6.1 控制系统的主要性能指标
5.6.2 开环频域指标与时域指标之间的关系

5.7 MATLAB 频域分析
5.7.1 线性系统的频域分析
5.7.2 频域分析性能指标

习题

第 6 章 控制系统的分析与校正

6.1 控制系统校正
6.1.1 校正的基本概念
6.1.2 校正的基本方式

第 4 章 控制系统的根轨迹法

4.1 根轨迹的基本概念
4.1.1 系统的根轨迹
4.1.2 根轨迹的幅值条件和相角条件

4.2 绘制根轨迹的基本规则
4.2.1 基本规则
4.2.2 根轨迹绘制举例

4.3 参量根轨迹及系统性能的根轨迹分析

4.3.1 参量根轨迹
4.3.2 系统性能的根轨迹分析

习题
目录

6.1.3 系统校正的方法………………… 153

6.2 串联超前校正…………………… 154
 6.2.1 相位超前校正装置…………… 154
 6.2.2 相位超前校正装置的作用…… 156
 6.2.3 校正方法…………………… 158

6.3 串联滞后校正…………………… 159
 6.3.1 相位滞后校正装置…………… 159
 6.3.2 相位滞后校正装置的作用…… 161
 6.3.3 校正方法…………………… 162

6.4 串联滞后-超前校正……………… 163
 6.4.1 相位滞后-超前校正装置……… 163
 6.4.2 相位滞后-超前校正装置的
 作用…………………………… 164
 6.4.3 校正方法…………………… 165

6.5 PID 校正…………………………… 166
 6.5.1 比例积分（PI）控制器……… 167
 6.5.2 比例微分（PD）控制器……… 168
 6.5.3 比例积分微分（PID）
 控制器………………………… 169

习题……………………………………… 169

第7章 离散控制系统…………………… 170

7.1 引言………………………………… 171

7.2 采样系统…………………………… 171

7.3 Z变换……………………………… 173
 7.3.1 Z变换……………………… 173
 7.3.2 Z变换的基本定理…………… 174
 7.3.3 Z反变换…………………… 176

7.4 脉冲传递函数……………………… 179
 7.4.1 脉冲传递函数定义…………… 179
 7.4.2 串联环节的脉冲传递函数…… 180

7.5 线性离散系统的脉冲传递
 函数……………………………… 182

7.6 线性离散系统的稳定性…………… 185
 7.6.1 S平面到Z平面的映射关系 … 185
 7.6.2 线性离散系统稳定的充要
 条件…………………………… 186

7.6.3 劳斯稳定判据…………………… 187

7.7 线性离散系统的时域分析……… 188
 7.7.1 极点在Z平面的分布与
 瞬态响应……………………… 188
 7.7.2 线性离散系统的时间响应…… 190
 7.7.3 线性离散系统的稳态误差…… 191

习题……………………………………… 192

第8章 MATLAB语言及其仿真实验…… 195

8.1 MATLAB语言简介………………… 196
 8.1.1 MATLAB的应用基础……… 196
 8.1.2 MATLAB函数……………… 197
 8.1.3 绘图响应曲线……………… 198
 8.1.4 MATLAB语言的联机
 帮助功能……………………… 200

8.2 MATLAB语言基础实验……… 200
 实验一 MATLAB语言平台……… 200
 实验二 MATLAB数值运算……… 203
 实验三 MATLAB绘图…………… 207
 实验四 MATLAB句柄绘图……… 211

8.3 控制理论仿真实验……………… 213
 实验五 控制系统的建模………… 213
 实验六 控制系统的稳定性
 分析实验……………………… 218
 实验七 控制系统的时域分析实验… 220
 实验八 控制系统的根轨迹分析…… 221
 实验九 控制系统的频域分析……… 221
 实验十 S函数的编写及应用……… 222

习题……………………………………… 227

附录A 常用函数的拉普拉斯变换
 对照表………………………… 229

附录B 常用函数的Z变换表…………… 230

附录C 控制系统中英文对照表……… 231

附录D 控制系统MATLAB常用函数… 236

参考文献………………………………… 244
自动控制系统的基本概念

教学要求与学习目标

(1) 掌握开环控制、闭环控制的基本概念。
(2) 掌握自动控制系统的基本组成和分类。
(3) 理解自动控制系统的基本要求。
(4) 了解复合控制系统的概念。

知识要点

(1) 自动控制系统的简单分类: 开环控制、闭环控制和复合控制。
(2) 自动控制系统的基本组成: 被控对象、测量装置、给定环节、放大环节、执行机构、校正装置。
(3) 自动控制系统的基本要求: 稳定性、稳态精度、响应速度。

所谓自动控制，就是指在没有人直接参与的情况下，利用控制装置，对生产过程、工艺参数等进行自动调节与控制，使之按照预定方案达到预定的要求。

在科学和工程的发展中，自动控制技术起着极其重要的作用，而自动控制原理是自动控制技术的基础理论，是研究自动控制系统共同规律理论性较强的一门专业基础课程。根据自动控制技术发展的不同阶段，自动控制原理一般可分为经典控制理论与现代控制理论。经典控制理论以传递函数为基本数学工具，主要研究单输入、单输出线性定常系统的控制问题。现代控制理论是以状态方程为基本数学工具，主要研究具有高性能的多输入、多输出、变参数系统的控制问题。现代控制理论能解决经典控制理论难以解决的一些问题，随着计算机技术的发展，现代控制理论正向大系统和人工智能理论等方面深入发展。

本书只对经典自动控制理论部分进行阐述，主要从工程应用的角度介绍自动控制原理的基本概念、基本理论及控制系统的分析和设计的基本方法。利用 MATLAB 现代仿真技术对控制系统的设计、校正等进行了详细的介绍。
1.1 控制系统的基本形式

1.1.1 人工控制

如图 1-1 所示是一个简单的水箱液面人工控制系统。因生产和生活需要，希望液面高度 H 维持恒定（在一定的偏差范围内）。当水位偏离期望值即给定值时，人通过眼睛对液面高度的观测，及时作出决定，操作进水阀门对进水量进行相应的修正，使液面恢复到期望的高度。这种人为强制性地改变进水量而使液面高度维持恒定的过程，即人工控制过程。人工控制只适合于简单的控制，在复杂、快速及需要精确控制的系统中无法满足控制要求，因此需要设计无人参与的自动控制系统。

1.1.2 自动控制

1. 自动控制的定义

自动控制就是在无人直接参与的情况下，利用控制装置使某种设备、工作机械或生产过程的某些物理量或工作状态能自动地按照预定的规律或数值运行或变化。对于液面的自动控制，可以利用如图 1-2 所示的方式去实现。液面的期望高度由自动控制系统给定。当出水与进水的平衡破坏时，水箱液面下降或上升，出现偏差，这个偏差由浮子检测出来，自动控制器在偏差的作用下控制气动阀门使阀门开大或关小，对偏差进行修正，从而保持液面高度不变。

2. 自动控制的基本职能元件

从人工控制与自动控制的例子比较可以看出，自动控制实际上是由自动控制装置来替代人的基本功能，从而实现自动控制。如图 1-3 所示，将人工控制与自动控制进行比较，自动控制实现人工控制功能，存在必不可少的三种替代人职能的基本元件：

（1）测量元件。代替人的眼睛，检测水位高低。

（2）检测偏差。自动控制器代替人的大脑，检测偏差，发出指令。

（3）执行器。代替人的手，操作阀门。

这些基本元件与被控对象（水箱）相连接，共同构成一个自动控制系统。典型的自动控制系统框图如图 1-4 所示。
1.2 典型反馈控制系统

1.2.1 系统框图

控制系统框图又称为动态结构图，它是以图形形式表示的数学模型。框图是系统各部分用方框表示并标注文字或代号，根据各方框之间的信号传递关系，用有向线段把它们依次连接起来，并标明相应的信息。框图能够非常清晰地表示输入信号在系统各元件之间的传递过程，利用框图还可以方便地求出复杂系统的传递函数。框图是分析控制系统的一个简明而有效的工具。图 1-3 和图 1-4 就是一个简单的阐述系统各元件功能和相互关系的框图。图 1-5 为水位控制系统示意图，而图 1-6 是典型的水位控制系统框图。
图 1-6 水位控制系统框图

图 1-7 为室温控制系统示意图，而图 1-8 为室温控制系统框图。

1.2.2 自动控制系统的组成

任何一个自动控制系统都是由被控对象和控制装置有机组合而成的。自动控制系统根据被控对象和具体任务不同，可以有各种不同的结构形式。图 1-9 所示是一个典型反馈控制系统框图，图中的每一个方框代表一个具有特定功能的元件。除被控对象外，控制装置通常是由测量元件、比较元件、放大元件、执行机构、校正元件及给定元件组成的。这些功能元件分别承担相应功能，共同完成控制任务。

图 1-9 典型反馈控制系统框图
（1）被控对象：与被控量相关的被控设备、工作机械或者生产系统。描述被控对象工作状态的、需要进行控制的物理量就是被控量。

（2）给定元件：用于产生给定信号或控制系统输入信号的元件。

（3）测量元件：用于检测被控量或输出量，产生反馈信号的元件。如果测量的物理量属于非电量，一般要转换成电量以便处理。

（4）比较元件：用来比较输入信号和反馈信号之间偏差的元件。可以是一个差动电路，也可以是一个物理元件，如电桥等。

（5）放大元件：用来放大偏差信号的幅值或功率，使之能够推动执行机构调节被控对象的元件，如功率放大器、电液伺服阀等。

（6）执行机构：用于直接对被控对象进行操作，调节被控量的元件，如阀门、步进电机等。

（7）校正元件：用来改善或提高系统性能的元件，常用串联或反馈方式连接到系统中，如 RC 网络、测速发电机等。

1.3 自动控制系统的分类

自动控制系统的形式多种多样，对于某一个具体系统，采取何种控制形式，要视具体情况和目的、用途而定。

1.3.1 按控制系统的结构分类

1. 开环控制系统

系统的输出量对系统调节作用没有影响的系统。如图 1-10 所示为新风温度开环控制系统框图。从图中可看出，控制量与被控量之间只有前向通路而没有反馈通路，输出量对输入量产生的控制没有影响。

2. 闭环控制系统

系统输出量对系统调节作用有直接影响的系统，闭环控制系统必定是反馈控制系统。如图 1-11 所示为室内温度自动控制系统框图，控制系统的作用是保持室内温度达到期望值。当室内温度降低时，室内温度传感器将检测到的温度信号送到控制器，控制器发出控制指令，执行器改变阀门开度，改变操作量使室内温度逼近期望值。

![图 1-10 新风温度开环控制系统框图](image1)

![图 1-11 室内温度自动控制系统框图](image2)
3. 复合控制系统

开环控制和闭环控制相互配合使用的控制系统。当外界扰动作用于控制系统而被控量没有反应之前，系统按照开环调节进行粗调，控制作用在一开始就能抵消扰动的大部分影响，使被控量不发生变化或变化很小。如果不能起到完全补偿作用，被控量存在一些偏差，则可以通过闭环回路进行细调。这种控制系统对于特定的扰动作用来说，能获得比一般闭环控制系统更好的控制效果。如图1-12所示为具有新风补偿的室温控制系统框图，补偿装置提供一个新风扰动信号，以减少室外空气干扰信号对室内温度的影响。

图1-12 具有新风补偿的室温控制系统框图

1.3.2 按给定信号的类型分类

恒值系统：指给定输入一经设定就维持不变，希望输出量维持在某一特定值上。显然，要想使系统输出维持恒值，克服扰动影响是系统设计中要解决的主要问题。

随动控制系统：指给定信号的变化规律事先不能确定或按预定规律变化的信号，这类控制系统任务是使输出快速、准确地跟随给定值变化而变化。显然，由于输入在不断地变化，设计这类系统要解决的主要问题是跟踪性，要求被控量能快速、准确地跟踪参考输入。

1.3.3 按系统参数是否随时间变化分类

定常系统：控制系统参数在系统运行过程中不随时间变化。

时变系统：控制系统参数在系统运行过程中随时间变化。

实际系统中的零漂、温度变化、元件老化等影响均属于时变因素，严格的定常系统是不存在的，在所考察的时间范围内，若系统参数变化相对于系统的运动缓慢很多，则可近似视作定常系统。

1.3.4 按控制系统的动态特性分类

线性控制系统：指组成控制系统的元件都具有线性特性，因此系统具有齐次性并满足叠加原理。

非线性控制系统：指控制系统中，至少有一个元件具有非线性特性，则此系统不满足叠加原理。
1.3.5 按信号传递的连续性分类

连续系统：指系统中各元件的输入信号和输出信号都是时间的连续函数。因此系统的运动方程可以用微分方程来描述。连续系统中各元件传输的信号在工程上称为模拟量，多数实际物理系统都属于这类。其输入用 \(r(t) \) 表示，输出用 \(c(t) \) 表示，如图 1-13 所示。

![图 1-13 模拟量的输入和输出](image)

离散系统：系统内某处或数字处理信号是以脉冲序列或数码形式传递的系统。如图 1-14 所示，其运动方程只能用差分方程描述。

在离散系统中，脉冲信号可由脉冲信号发生器或振荡器产生，也可由采样开关将连续信号变成脉冲信号序列，这类控制系统又称为采样控制系统或脉冲控制系统。而用数字计算机或数字控制器控制的系统又称为数字控制系统或计算机控制系统。如图 1-15 和图 1-16 所示分别为脉冲控制系统和计算机采样数字控制系统框图。

![图 1-14 离散信号](image)

![图 1-15 脉冲控制系统框图](image)

![图 1-16 计算机采样数字控制系统框图](image)

1.4 控制系统的基本要求

在分析和设计控制系统时，必须有评价系统的基本要求。这个标准通常用性能指标来表示。不同被控对象、不同控制任务对性能要求往往是不同的，但是总体上来说，对任何控制系统的根本要求，集中体现在控制系统的“稳定性”、“动态特性”和“稳态特性”三个方面，或简称为“稳”、“快”、“准”。
1.4.1 稳定性

控制系统的稳定性通常定义如下：一个处于静止或某一平衡工作状态的系统，在受到任何输入（给定信号或扰动）作用时，系统输出会离开静止状态或偏离原来的平衡位置，当作用消除后，若系统能回到原来的静止状态或平衡位置，则系统是稳定的；否则，系统是不稳定的。

对于线性定常系统，也可表达如下：在阶跃信号（突变）作用下，若系统输出有一个确定值与之相对应，则称系统是稳定的；若系统输出值越来越大，则称系统是不稳定的。如图 1-17所示。

![图 1-17 线性定常系统输出的收敛和发散](image)

1.4.2 动态特性

稳定的控制系统，当受到阶跃（突变）信号作用后，由于系统内部机械部件质量和惯性的作用、内部电路中存在的电容、电感等储元元件的原因，使系统输出要经历一个过程才能达到某一稳定值。系统输出随时间 t 变化的这一过程称为系统的响应过程。响应过程常常又以调节时间 t_1（或称为过渡过程时间）为界，分为动态过程（又称为暂态过程或瞬态过程）和稳态过程（又称为静态过程），如图 1-18所示。动态过程就是反映系统在动态过程中，跟踪输入或抑制干扰的能力。动态特性好的系统，表现为动态过程具有良好的平稳性、调节时间短且振荡次数少。

![图 1-18 稳定系统的典型阶跃响应](image)

1.4.3 稳态特性

系统在过渡过程结束后，其输出量的状态值，一般用稳态误差来描述。稳态误差的大小反映了控制系统的精确程度。稳态误差值越小的系统，说明系统的控制精度越高，稳态特性越好。
第1章 自动控制系统的基本概念

【注意】

① 对于一个控制系统，体现稳定性、动态特性和稳态特性的稳、快、准这三个指标要求是相互制约的。提高响应的快速性，可能会引起系统的强烈振荡。
② 改善控制系统的相对稳定性，则又可能会使控制过程时间延长，反应迟缓以及精度变差。
③ 提高控制系统的稳态精度，则可能会引起动态特性（平稳性及过渡过程时间）变坏。

习 题

1-1 试列举建筑电气中的开环控制系统和闭环控制系统，说明其工作原理并画出相应的原理示意图。
1-2 试说明开环控制系统和闭环控制系统的概念。
1-3 如图1-19所示的液位自动控制系统原理图。在任意情况下，希望液面高度h维持不变。试说明系统工作原理并绘制出系统框图。

图1-19 液位自动控制系统原理图

1-4 电冰箱制冷系统工作原理图如图1-20所示。试简述系统的工作原理，指出系统的被控对象、被控量和给定值，画出系统框图。

图1-20 电冰箱制冷系统工作原理示意
第2章

控制系统的数学模型

教学要求与学习目标

1. 掌握拉普拉斯变换和拉普拉斯反变换的定义。
2. 掌握微分形式的拉普拉斯变换。
3. 理解传递函数的概念，掌握典型环节的传递函数。
4. 掌握控制系统结构图概念，并能熟练简化系统结构图。
5. 熟练掌握使用 MATLAB 求传递函数的方法。
6. 了解信号流程图与使用梅逊公式求传递函数。

知识要点

1. 拉普拉斯变换与拉普拉斯反变换。
 拉普拉斯变换与反变换的定义、微分形式的拉普拉斯变换及解公式。
2. 控制系统的数学模型。
 微分方程形式、传递函数形式、结构图形式及其与它们之间的相互转换。
3. 典型环节的传递函数。
 比例环节、惯性环节、积分环节、微分环节、一阶微分环节、延迟环节、二阶振荡环节的微分方程形式及其相应的传递函数。
4. MATLAB 求解传递函数。
 各种不同函数表达方式及命令求取传递函数、传递函数各种表达式之间的相互转换。
第 2 章 控制系统的数学模型

要定量地分析和研究一个自动控制系统，首先必须建立数学模型。

经典控制理论中，线性定常系统的数学模型，是描述系统的输出量与输入量（一般为给定输入和扰动输入）之间关系的数学表达式或图形。数学模型有各种不同的形式，包括：微分方程、传递函数、动态结构图、信号流程图及频率特性等。不同形式的数学模型，在一定的条件下可以相互转换。同一个系统可用不同的数学模型描述。

控制系统的数学模型关系到系统分析、研究结果的准确性，因此，建立系统数学模型的准确性，具有特别重要的意义。

通过拉普拉斯变换（简称拉普拉斯变换），可将微分方程转换为代数方程，使微分方程的求解大大简化，而传递函数又是建立在拉普拉斯变换基础上的，因此，拉普拉斯变换是自动控制理论的数学基础。

2.1 拉普拉斯变换

2.1.1 拉普拉斯变换定义

一个定义在\([0, \infty)\)区间的函数\(f(t)\)，它的拉普拉斯变换式\(F(s)\)的定义为

\[
F(s) = \int_0^\infty f(t) e^{-st} dt
\]

式中，\(s = \sigma + j\omega\)为复数；\(F(s)\)称为\(f(t)\)的拉普拉斯变换（或象函数），记\(F(s) = L[f(t)]\)；\(f(t)\)称为\(F(s)\)的拉普拉斯反变换（或原函数），记\(f(t) = L^{-1}[F(s)]\)

实际工程中，以时间\(t\)为自变量的函数\(f(t)\)通常都可以进行拉普拉斯变换。

下面按拉普拉斯变换的定义式（2-1）来推导常用函数的拉普拉斯变换。

1. 单位阶跃函数

如图 2-1 所示，其数学表达式为

\[
1(t) = \begin{cases} 0 & (t < 0) \\ 1 & (t \geq 0) \end{cases}
\]

\[
L[1(t)] = \int_0^\infty 1(t) e^{-st} dt = \int_0^\infty e^{-st} dt = \left. -\frac{e^{-st}}{s} \right|_0^\infty = \frac{1}{s}
\]

2. 单位脉冲函数

如图 2-2 所示，其数学表达式为

\[
\delta(t) = \begin{cases} 0 & (t < 0, t > \varepsilon) \\ \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} & (0 \leq t \leq \varepsilon) \end{cases}
\]

\[
L[\delta(t)] = \int_0^\infty \delta(t) e^{-st} dt = \int_0^\varepsilon \delta(t) e^{-st} dt = 1
\]

\[
(2-3)
\]
3. 指数函数 e^{-at}

$$L[e^{-at}] = \int_{0}^{\infty} e^{-at} e^{-st} \, dt = \int_{0}^{\infty} e^{-(a+s)t} \, dt = -\left[\frac{e^{-(a+s)t}}{a+s} \right]_{0}^{\infty} = \frac{1}{s+a} \quad (2-4)$$

4. t^n（n 是正整数）

$$L[t^n] = \int_{0}^{\infty} t^n e^{-st} \, dt$$

用分部积分法，得

$$\int_{0}^{\infty} t^n e^{-st} \, dt = -\frac{t^n}{s} e^{-st} \bigg|_{0}^{\infty} + \frac{n}{s} \int_{0}^{\infty} t^{n-1} e^{-st} \, dt = \frac{n}{s} \int_{0}^{\infty} t^{n-1} e^{-st} \, dt$$

因此有:

$$L[t^n] = \frac{n}{s} L[t^{n-1}]$$

当 $n=1$ 时，$L[t] = \frac{1}{s^2}$

当 $n=2$ 时，$L[t^2] = \frac{2}{s^3}$

由数学归纳法，得

$$L[t^n] = \frac{n!}{s^{n+1}} \quad (2-5)$$

我们将控制系统中常用的一些函数 $f(t)$ 及其拉普拉斯变换 $F(s)$ 的关系，编制表格以便查阅，见附录 A。

2.1.2 拉普拉斯变换基本性质

1. 线性性质

拉普拉斯变换遵循线性函数的齐次性和叠加性。若 α、β 是任意实数，且 $L[f_1(t)] = F_1(s)$，

$$L[\alpha f_1(t) + \beta f_2(t)] = \alpha F_1(s) + \beta F_2(s)$$

$$L^{-1}[\alpha F_1(s) \pm \beta F_2(s)] = \alpha L^{-1}[F_1(s)] \pm \beta L^{-1}[F_2(s)] = \alpha f_1(t) \pm \beta f_2(t)$$

【例 2-1】求 $f(t) = -3t + 4e^{-t}$ 的拉普拉斯变换 $F(s)$。
第2章 控制系统的数学模型

【解】 因为 $L[t]=\frac{1}{s}$, $L[e^{-t}] = \frac{1}{s+1}$

所以

$$F(s) = -\frac{3}{s^2} + \frac{4}{s+1}$$

【MATLAB 实现】

```matlab
syms s t ft Fs
ft=-3*t+4*exp(-t); % 给原函数赋值
Fs=laplace(ft) % 拉普拉斯求象函数
Fs = 4/(s + 1) - 3/s^2
```

2. 微分性质

若 $L[f(t)] = F(s)$，则

$$L\left[\frac{df(t)}{dt}\right] = sF(s) - f(0)$$

其中，$f(0)$ 是 $f(t)$ 在 $t=0$ 时的初始值。

【例 2-2】利用微分性质求 $f(t) = \cos \omega t$ 的拉普拉斯变换 $F(s)$。

【解】 因为 $\frac{d}{dt}(\sin \omega t) = \omega \cos \omega t$，所以

$$L[\cos \omega t] = L\left[\frac{1}{\omega} \frac{d}{dt}(\sin \omega t)\right] = \frac{1}{\omega} \left[s \cdot L(\sin \omega t) - \sin \omega t|_{t=0}\right]$$

$$= \frac{1}{\omega} \left(s \cdot \frac{\omega}{s^2 + \omega^2}\right) = \frac{s}{s^2 + \omega^2}$$

由此推论，若 $L[f(t)] = F(s)$，则有

$$L\left[\frac{d^n f(t)}{dt^n}\right] = s^n F(s) - \sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0)$$

式中，$f(0)$, $f'(0)$, …, $f^{(n)}(0)$ 及其各阶导数在 $t=0$ 时的值。

若初始值 $f(0) = f'(0) = f''(0) = \cdots = f^{(n-1)}(0) = 0$，则有

$$L\left[\frac{d^n f(t)}{dt^n}\right] = s^n F(s)$$

3. 积分性质

若 $L[f(t)] = F(s)$，则

$$L\left[\int_0^t f(t)dt\right] = \frac{1}{s} F(s) + \frac{f^{-1}(0)}{s}$$

式中，$f^{-1}(0) = \int_0^t f(\tau)d\tau$ 是 $f(t)$ 的积分式在 $t=0$ 时的取值。
【例 2-3】求 \(f(t) = t \) 的拉普拉斯变换。

【解】因为 \(f(t) = \int_0^t 1(t) dt \)，所以

\[
L[f(t)] = L[\int_0^t 1(t) dt] = \frac{1}{s} L[1(t)] = \frac{1}{s^2}
\]

4. 位移性质

若 \(L[f(t)] = F(s) \)，则

\[
L[e^{at}f(t)] = F(s-a)
\]

【例 2-4】求 \(f(t) = e^{-at} \) 的拉普拉斯变换 \(F(s) \)。

【解】因为 \(L[t^n] = \frac{n!}{s^{n+1}} \)，所以

\[
F(s) = L[e^{-at}] = \frac{n!}{(s+a)^{n+1}}
\]

5. 延迟性质

若 \(L[f(t)] = F(s) \)，则

\[
L[f(t-\tau)] = e^{-s\tau} F(s)
\]

式中 \(\tau \) 为任意实数，\(f(t-\tau) \) 的函数图形如图 2-3 所示。

【例 2-5】求 \(u(t+\tau) = \begin{cases} 0, & t < \tau \\ 1, & t \geq \tau \end{cases} \) 的拉普拉斯变换，图形如图 2-4 所示。

【解】因为 \(L[u(t)] = \frac{1}{s} \)，所以

\[
L[u(t-\tau)] = \frac{1}{s} e^{-s\tau}
\]

![图 2-3 延迟信号](image1)

![图 2-4 例 2-5 中的延迟信号](image2)

6. 初值定理

若 \(L[f(t)] = F(s) \)，且 \(\lim sF(s) \) 存在，则

\[
f(0^+) = \lim_{t \to 0^+} f(t) = \lim_{s \to \infty} sF(s)
\]

【例 2-6】若 \(L[f(t)] = \frac{1}{s+1} \)，求 \(f(0^+) \)。

【解】

\[
f(0^+) = \lim_{s \to \infty} sF(s) = \lim_{s \to \infty} \frac{s}{s+a} = 1
\]
第2章 控制系统的数学模型

【MATLAB 实现】
```
syms s flimit Fs % 设置为字符型变量
Fs = 1 / (s + 1); % 象函数
flimit = limit (s * Fs, s, inf) % 求极限
flimit =
1
```

7. 终值定理
若 \(L[f(t)] = F(s) \)，且 \(\lim_{t \to \infty} f(t) \) 存在，则
\[
f(\infty) = \lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)
\]

【注意】
终值定理的应用条件分为以下几种情况。
① 当 \(t \to \infty \) 时，\(f(t) \) 有意义，即存在极限。例如 \(\lim_{t \to \infty} \cos \omega t \) 无极限，则不能应用终值定理。
② 若已知 \(F(s) \) 时，当 \(sF(s) \) 的分母多项式的根处于虚轴左半S平面（原点除外）时，终值定理可用。例如 \(sF(s) = s - \frac{\omega}{s^2 + \omega^2} \)，分母多项式的根在虚轴上，定理不可用； \(sF(s) = \frac{1}{s^2} \) 分母多项式的根在原点，可以使用该定理。

2.1.3 拉普拉斯反变换

由象函数 \(F(s) \) 求取原函数 \(f(t) \) 的运算称为拉普拉斯反变换，它与拉普拉斯变换一一对应。我们通过部分分式展开，然后采用查表的方法进行拉普拉斯反变换，进而求取原函数。

控制系统中的象函数是 \(s \) 的有理分式，则可写成下列形式：
\[
F(s) = \frac{B(s)}{A(s)} = \frac{b_0 s^n + b_1 s^{n-1} + \cdots + b_m s + b_n}{a_0 s^n + a_1 s^{n-1} + \cdots + a_m s + a_n}
\]
式中，系数 \(a_i, b_i \) 是实常数，\(n, m \) 是正整数，通常 \(n > m \)。我们利用部分分式分解法求解，先将 \(\frac{B(s)}{A(s)} \) 转换为一些简单分式之和，再查表得到原函数。

为了将 \(F(s) \) 转换为部分分式之和的形式，首先把 \(F(s) \) 的分母进行因式分解，即
\[
A(s) = a_0 (s - p_1) (s - p_2) \cdots (s - p_n)
\]
式中，\(p_1, p_2, \cdots, p_n \) 为 \(A(s) \) 的根，称为 \(F(s) \) 的极点。
根据极点的不同特点，部分分式分解法有以下两种情况：

1. \(A(s) = 0 \) 且无重根

若 \(A(s) = 0 \) 且无重根，则 \(F(s) \) 可展开成 \(n \) 个简单的部分分式之和，即
\[
F(s) = \frac{k_1}{s - p_1} + \frac{k_2}{s - p_2} + \cdots + \frac{k_i}{s - p_i} + \cdots + \frac{k_n}{s - p_n}
\]
式中，\(k_i \) 为待定系数，可按下式进行计算：

\[
A(s) = a_0 (s - p_1) (s - p_2) \cdots (s - p_n)
\]
按式（2-9）将待定系数全部求出后，再查表求出原函数。

【例 2-7】求 \(F(s) = \frac{4s + 5}{s^2 + 5s + 6} \) 的原函数 \(f(t) \)。

【解】将 \(F(s) \) 写成分部分式展开形式，即

\[
F(s) = \frac{4s + 5}{s^2 + 5s + 6} = \frac{k_1}{s + 2} + \frac{k_2}{s + 3}
\]

按式（2-9）计算待定系数，得

\[
k_1 = \lim_{s \to -2} (s + 2)F(s) = \lim_{s \to -2} \frac{4s + 5}{s + 3} = -3
\]

\[
k_2 = \lim_{s \to -3} (s + 3)F(s) = \lim_{s \to -3} \frac{4s + 5}{s + 2} = 7
\]

查附录 A 求得原函数，为

\[
f(t) = -3e^{-2t} + 7e^{-3t}
\]

【MATLAB 实现】

```matlab
syms s t ft Fs
Fs= (4*s+5) / (s*s+5*s+6);  % 象函数
ft=ilaplace(Fs);           % 求解出原函数
ft = 7*exp (-3*t) - 3*exp (-2*t)
```

2. \(A(s) = 0 \) 且有重根

若 \(A(s) = 0 \) 且有 \(r \) 个重根 \(p_i \)，则 \(F(s) \) 可写成

\[
F(s) = \frac{B(s)}{(s - p_1)(s - p_{r+1}) \cdots (s - p_r)} = \frac{k_1}{s - p_1} + \frac{k_2}{(s - p_1)^2} + \cdots + \frac{k_r}{(s - p_1)^r} + \frac{k_{r+1}}{s - p_{r+1}} + \cdots + \frac{k_n}{s - p_n}
\] \hspace{1cm} (2-10)

式中，\(p_i \) 为 \(F(s) \) 的重极点；\(p_{r+1}, \ldots, p_n \) 为 \(F(s) \) 的 \((n-r)\) 个非重极点；\(k_1, k_2, \ldots, k_r, k_{r+1}, \ldots, k_n \) 为待定系数，其中 \(k_{r+1}, \ldots, k_n \) 按式（2-9）计算，但 \(k_1, k_2, \ldots, k_r \) 按下式计算：

\[
k_1 = \lim_{s \to p_1} (s - p_1) F(s)
\]

\[
k_2 = \lim_{s \to p_1} \frac{d}{ds} \left[(s - p_1) F(s)\right]
\]

\[
\vdots
\]

\[
k_r = \lim_{s \to p_1} \frac{d^{r-1}}{ds^{r-1}} \left[(s - p_1) F(s)\right]
\]
【例 2-8】求 \(F(s) = \frac{s^2 - 2}{s(s+1)^3} \) 的原函数 \(f(t) \)。

【解】将 \(F(s) \) 写成分部分式展开形式，即

\[
F(s) = \frac{k_1}{(s+1)^3} + \frac{k_2}{(s+1)^2} + \frac{k_3}{s+1} + \frac{k_4}{s},
\]

其中

\[
k_1 = \lim_{s \to -1} (s+1)^3 F(s) = 3
\]

\[
k_2 = \lim_{s \to -1} \frac{d}{ds} [(s+1)^3 F(s)] = 2
\]

\[
k_3 = \lim_{s \to -1} \frac{1}{2!} \frac{d^2}{ds^2} [(s+1)^3 F(s)] = 2
\]

\[
k_4 = \lim_{s \to 0} s F(s) = -2
\]

所以，\(f(t) = \left(\frac{3}{2} t^2 + 2t + 2 \right) e^{-t} - 2 \)

【MATLAB 实现】

```matlab
syms s t ft Fs %设置为字符型变量
Fs=(s-2)/(s*(s+1)*(s+1)*(s+1)); %象函数
ft=ilaplace(Fs) %求解出原函数
ft =
2*exp(-t) + 2*t*exp(-t) + (3*t^2*exp(-t))/2 - 2
```

2.2 控制系统的微分方程

在经典控制理论中采用控制系统的输入-输出描述，其目的在于通过该数学模型确定被控量与给定量之间的关系，为分析和设计系统创造条件。给定量或扰动量称为系统的输入量，被控量则称为系统的输出量。

描述控制系统的动态过程和动态特性最常用的方法就是建立微分方程并求解微分方程的解。建立控制系统微分方程的一般步骤如下：

(1) 根据实际情况，确定系统的输入量和输出量。

(2) 将系统划分为若干环节，从输入端开始，按信号传递的顺序，依据各变量所遵循的物理规律等，分别列出相应的微分方程。

(3) 消除中间变量，得到描述系统输入量和输出量之间关系的微分方程。

(4) 将微分方程转换成标准形式，即与输入量有关的项写在方程的右端，与输出量有关的项写在左端，方程两端变量的导数项按降幂排列。

2.2.1 机械系统

【例 2-9】如图 2-5 所示。一个弹簧-质量-阻尼器机械位移系统，试写出质量为 \(m \) 的物块在外力 \(F(t) \) 作用下，位移 \(y(t) \) 的运动方程。
【解】外力 $F(t)$ 和位移 $y(t)$ 可视作系统的输入量和输出量。f 为阻尼系数，k 为弹簧刚度系数，一般情况下都可视作常数。若质量为 m 的物块在初始状态为零条件下 t 时刻的位移、速度、加速度分别为 $y(t)$、$\frac{dy(t)}{dt}$、$\frac{d^2y(t)}{dt^2}$，则

阻尼器的阻尼力为

$$F_1(t) = f\frac{dy(t)}{dt}$$

弹簧的弹性力为

$$F_2(t) = ky(t)$$

代入整理，得

$$m\frac{d^2y(t)}{dt^2} + f\frac{dy(t)}{dt} + k\frac{d^2y(t)}{dt^2} = \frac{1}{m} F(t)$$

【例 2-10】如图 2-6 所示为一机械旋转系统，其中圆柱体的转动惯量为 J，在转矩 T 的作用下产生角位移 θ，求该系统的微分方程。

图 2-6 机械旋转系统

【解】假定圆柱体的质量分布是均匀的，质心位于旋转轴线上，且惯性主轴和旋转主轴线重合，则利用牛顿运动定律，可得转矩的平衡方程：

$$J\frac{d^2\theta(t)}{dt^2} = T - T_1(t) - T_2(t)$$

其中：$T_1(t) = f\omega = f\frac{d\theta(t)}{dt}$，$T_2(t) = k\theta(t)$

式中，f 为黏性摩擦系数，在一定条件下可视作常数；ω 为角速度，是角位移 θ 对时间 t 的导数；k 为弹性扭转变形系数，在一定条件下可视作常数；$T_1(t)$ 为摩擦转矩；$T_2(t)$ 为扭转弹性转矩。

可知，描述系统输入与输出关系的微分方程为

$$\frac{J}{k}\frac{d^2\theta(t)}{dt^2} + \frac{f}{k}\frac{d\theta(t)}{dt} + \frac{\theta(t)}{k} = \frac{T}{k}$$
2.2.2 电路系统

【例 2-11】如图 2-7 所示是电阻 R、电感 L、电容 C 等电气元件组成的无源串联网络，试求以 $u_i(t)$ 为输入量，$u_o(t)$ 为输出量的微分方程。

图 2-7 RLC 无源串联网络

【解】设回路电流为 $i(t)$，由基尔霍夫电压定律写出回路电压方程为

$$L\frac{di(t)}{dt} + u_o(t) + Ri(t) = u_i(t)$$

而电容两端的电压为

$$u_o(t) = \frac{1}{C}\int i(t) \, dt$$

将上两式联合，消除中间变量 $i(t)$，则 RLC 无源网络输入与输出之间关系的微分方程为

$$LC\frac{d^2u_o(t)}{dt^2} + RC\frac{du_o(t)}{dt} + u_o(t) = u_i(t)$$

2.2.3 机电系统

【例 2-12】列写如图 2-8 所示的电枢控制式直流电动机转速控制系统的微分方程。要求取电枢电压 $u_a(t)$ 为输入量，电动机转速 $\omega(t)$ 为输出量。图中 R_s、L_s 分别为电枢电路的电阻和电感，M_c 是折合到电动机轴上的总负载转矩，并假定激磁磁通为常值。

图 2-8 电枢控制式直流电动机转速控制系统

【解】由图 2-8 所示，可列出电枢回路的电压平衡方程：

$$L_s\frac{di_s(t)}{dt} + R_s i_s(t) + e_s(t) = u_a(t)$$
自动控制原理

式中，\(e_a(t) \) 是当电枢旋转时产生的反电动势，其大小与激磁磁通及转速成正比，方向与电枢电压\(u_a(t) \) 相反，即 \(e_a(t) = C_e \omega(t) \)，\(C_e \) 是反电动势系数，单位为 \(V/(s^{-1}) \)。

电磁转矩方程为

\[
M_m(t) = C_m e_a(t)
\]

式中，\(M_m(t) \) 为由电枢电流产生的电磁转矩，单位为 \(N \cdot m \)；\(C_m \) 为电动机转矩系数，单位为 \(N \cdot m / A \)。

电动机轴上的转矩平衡方程为

\[
J \frac{d\omega(t)}{dt} + f \omega(t) = M_m(t) - M_e(t)
\]

式中，\(J \) 为电动机的负载折合到电动机轴上的转动惯量，单位为 \(N \cdot m \cdot s^2 \)；\(f \) 为电动机和负载折合到电动机轴上的黏性摩擦系数，单位为 \(N \cdot m \cdot s \)。上式中已忽略扭转弹性转矩。将以上三个方程联合求解，消除中间变量\(i_a(t) \)、\(e_a(t) \)、\(M_m(t) \)，便可得到以\(\omega(t) \) 为输出量，\(u_a(t) \) 为输入量的直流电动机微分方程，

\[
L_a J \frac{d^2\omega(t)}{dt^2} + (L_a f + R_e J) \frac{d\omega(t)}{dt} + (R_e f + C_m C_e) \omega(t) = C_m u_a(t) - L_a \frac{dM_e(t)}{dt} - R_e M_e(t)
\]

【注意】

① 不同类型的控制系统，可以得到具有相同形式的微分方程。
② 求解控制系统的微分方程，必须理解控制系统每个物理元件或电气环节的规律，弄清每个环节的输入参数和输出参数。
③ 在已知输入和输出参数前提下，消除中间变量，就可以得到控制系统的微分方程。
④ 我们把数学模型相同的各种物理系统统称为相似系统。相似系统揭示了不同物理现象之间的相似关系，利用相似系统概念，可以把一种物理系统研究得到的结论推广到其他系统中去，便于我们用一个简单、比较容易实现的模型去模拟研究与其相似的复杂系统。

2.3 传递函数

在控制系统理论中，描述系统输入-输出关系常采用传递函数。传递函数不仅可以表征系统的动态特性，而且可以用来研究系统的结构或参数变化对系统性能的影响。经典控制理论中广泛采用的根轨迹法和频域分析法，就是以传递函数为基础建立起来的，因此传递函数是经典控制理论中最基本也是最重要的数学模型。

2.3.1 传递函数定义

传递函数是在零初始条件下，线性定常系统输出量的拉普拉斯变换式与输入量的拉普拉斯变换式之比。

线性定常系统的微分方程一般可表示为
第 2 章 控制系统的数学模型

\[\frac{d^n c(t)}{dt^n} + a_1 \frac{d^{n-1} c(t)}{dt^{n-1}} + \cdots + a_n c(t) = a_0 \frac{dc(t)}{dt} + \cdots + a_{n-1} \frac{dc(t)}{dt} + a_n c(t) = 0 \] \hspace{1cm} (2-11)

\[\frac{d^n r(t)}{dt^n} + b_1 \frac{d^{n-1} r(t)}{dt^{n-1}} + \cdots + b_n r(t) = b_0 \frac{dr(t)}{dt} + \cdots + b_{n-1} \frac{dr(t)}{dt} + b_n r(t) = 0 \]

式中，\(c(t) \) 为输出量；\(r(t) \) 为输入量；\(a_0, a_1, \cdots, a_n \) 及 \(b_0, b_1, \cdots, b_n \) 均为由系统结构、参数决定的常系数。

在零初始条件下对式 (2-11) 两端进行拉普拉斯变换，可得相应的代数方程:

\[C(s) = b_0 s^n + b_1 s^{n-1} + \cdots + b_n = b_0 s^n + b_1 s^{n-1} + \cdots + b_n R(s) \] \hspace{1cm} (2-12)

则系统的传递函数为

\[G(s) = \frac{C(s)}{R(s)} = \frac{b_0 s^n + b_1 s^{n-1} + \cdots + b_n}{a_0 s^n + a_1 s^{n-1} + \cdots + a_n} \] \hspace{1cm} (2-13)

【注意】

传递函数是在零初始条件下定义的，零初始条件有两方面含义：
① 指输入作用是在 \(t = 0 \) 以后才作用于系统，系统输入量及其各阶导数在 \(t \leq 0 \) 时均为零。
② 指输入作用于系统之前，系统是“相对静止”的，即系统输出量及其各阶导数在 \(t \leq 0 \) 时的值也为零。

【例 2-13】求解例 2-11 RLC 无源网络的传递函数。

【解】由例 2-11 知，RLC 无源网络的微分方程为

\[LC \frac{d^2 u_o(t)}{dt^2} + RC \frac{du_o(t)}{dt} + u_o(t) = u_i(t) \]

在零初始条件下，对上式两端进行拉普拉斯变换，有:

\[LC s^2 U_o(s) + RC U_o(s) + U_o(s) = U_i(s) \]

整理可得网络的传递函数为

\[G(s) = \frac{U_o(s)}{U_i(s)} = \frac{1}{LC s^2 + RC s + 1} \]

2.3.2 传递函数性质

（1）传递函数是微分方程经拉普拉斯变换导出的，由拉普拉斯变换定义可知，它实质是一种线性积分计算，因此传递函数的概念只适用于线性定常系统。

（2）传递函数是复变量 \(s \) 的有理真分式，其分母多项式的阶次 \(n \) 大于等于分子多项式的阶次 \(m \)，即 \(n \geq m \)。

（3）传递函数只取决于系统本身的结构和参数，因此，它是系统动态数学模型，而与输入信号的具体形式和大小无关，也不反映系统内部的任何信息。

（4）传递函数只表明一个特定的输入、输出关系。同一系统，取不同变量作输出，以给定或不同位置的干扰为输入，传递函数将各不相同。因此，传递函数必须指明输入量和输出量。

（5）传递函数概念主要适合于单输入、单输出情况。若系统有多个输入信号，在求传递函
数时，除了指定的输入量，其他输入量（包括常值输入量）视为零。对多输入、多输出线性定常系统，求取不同输入和输出之间的传递函数将得到系统的传递函数矩阵。

（6）传递函数只反映系统在零初始条件下的运动特性。零初始条件具有两层含义：一是指输入量在 \(t \geq 0 \) 时才起作用；二是指输入量加载到系统之前，系统处于稳定的工作状态。

（7）服从不同物理规律的系统，可以有同样的传递函数，因此它不能反映系统的物理结构和性质。

（8）传递函数的拉普拉斯反变换即为系统的脉冲响应，因此传递函数能反映系统的运动特性。因为单位脉冲函数的拉普拉斯变换式为 \(R(s) = L[\delta(t)] = 1 \) ，故有

\[
L^{-1}[G(s)] = L^{-1}\left[\frac{C(s)}{R(s)}\right] = L^{-1}[C(s)] = \delta(t)
\]

\[(2-14) \]

2.4 典型环节的传递函数

实际控制系统的种类很多，数学模型繁杂多样。为分析方便，常常将复杂的控制系统分割成许多典型环节，从数学模型的角度观察，这些环节都具有相同的数学模型。

2.4.1 比例环节

比例环节又称放大环节，其输出量与输入量为固定的比例关系，其动态方程为

\[
c(t) = Kr(t)
\]

式中，\(r(t) \) —输入信号；

\(c(t) \) —输出信号；

\(K \) —比例系数，又称为增益或放大倍数。

比例环节的传递函数为：

\[
G(s) = \frac{C(s)}{R(s)} = K
\]

(2-16)

比例环节的实例很多，如图 2-9 所示中（a）、（b）、（c）分别为电压改变、水压改变、温度改变引起的电流、水流量、热流量的变化；（d）、（e）为通过杠杆传递的位移和力。

2.4.1 典型环节的传递函数

2.4.1 比例环节

比例环节又称放大环节，其输出量与输入量为固定的比例关系，其动态方程为

\[
c(t) = Kr(t)
\]

式中，\(r(t) \) —输入信号；

\(c(t) \) —输出信号；

\(K \) —比例系数，又称为增益或放大倍数。

比例环节的传递函数为：

\[
G(s) = \frac{C(s)}{R(s)} = K
\]

(2-16)

比例环节的实例很多，如图 2-9 所示中（a）、（b）、（c）分别为电压改变、水压改变、温度改变引起的电流、水流量、热流量的变化；（d）、（e）为通过杠杆传递的位移和力。

2.4.1 典型环节的传递函数

实际控制系统的种类很多，数学模型繁杂多样。为分析方便，常常将复杂的控制系统分割成许多典型环节，从数学模型的角度观察，这些环节都具有相同的数学模型。

2.4.1 比例环节

比例环节又称放大环节，其输出量与输入量为固定的比例关系，其动态方程为

\[
c(t) = Kr(t)
\]

式中，\(r(t) \) —输入信号；

\(c(t) \) —输出信号；

\(K \) —比例系数，又称为增益或放大倍数。

比例环节的传递函数为：

\[
G(s) = \frac{C(s)}{R(s)} = K
\]

(2-16)

比例环节的实例很多，如图 2-9 所示中（a）、（b）、（c）分别为电压改变、水压改变、温度改变引起的电流、水流量、热流量的变化；（d）、（e）为通过杠杆传递的位移和力。

2.4.1 典型环节的传递函数

实际控制系统的种类很多，数学模型繁杂多样。为分析方便，常常将复杂的控制系统分割成许多典型环节，从数学模型的角度观察，这些环节都具有相同的数学模型。

2.4.1 比例环节

比例环节又称放大环节，其输出量与输入量为固定的比例关系，其动态方程为

\[
c(t) = Kr(t)
\]

式中，\(r(t) \) —输入信号；

\(c(t) \) —输出信号；

\(K \) —比例系数，又称为增益或放大倍数。

比例环节的传递函数为：

\[
G(s) = \frac{C(s)}{R(s)} = K
\]

(2-16)

比例环节的实例很多，如图 2-9 所示中（a）、（b）、（c）分别为电压改变、水压改变、温度改变引起的电流、水流量、热流量的变化；（d）、（e）为通过杠杆传递的位移和力。

2.4.1 典型环节的传递函数

实际控制系统的种类很多，数学模型繁杂多样。为分析方便，常常将复杂的控制系统分割成许多典型环节，从数学模型的角度观察，这些环节都具有相同的数学模型。

2.4.1 比例环节

比例环节又称放大环节，其输出量与输入量为固定的比例关系，其动态方程为

\[
c(t) = Kr(t)
\]

式中，\(r(t) \) —输入信号；

\(c(t) \) —输出信号；

\(K \) —比例系数，又称为增益或放大倍数。

比例环节的传递函数为：

\[
G(s) = \frac{C(s)}{R(s)} = K
\]

(2-16)

比例环节的实例很多，如图 2-9 所示中（a）、（b）、（c）分别为电压改变、水压改变、温度改变引起的电流、水流量、热流量的变化；（d）、（e）为通过杠杆传递的位移和力。

2.4.1 典型环节的传递函数

实际控制系统的种类很多，数学模型繁杂多样。为分析方便，常常将复杂的控制系统分割成许多典型环节，从数学模型的角度观察，这些环节都具有相同的数学模型。

2.4.1 比例环节

比例环节又称放大环节，其输出量与输入量为固定的比例关系，其动态方程为

\[
c(t) = Kr(t)
\]

式中，\(r(t) \) —输入信号；

\(c(t) \) —输出信号；

\(K \) —比例系数，又称为增益或放大倍数。

比例环节的传递函数为：

\[
G(s) = \frac{C(s)}{R(s)} = K
\]

(2-16)

比例环节的实例很多，如图 2-9 所示中（a）、（b）、（c）分别为电压改变、水压改变、温度改变引起的电流、水流量、热流量的变化；（d）、（e）为通过杠杆传递的位移和力。
第 2 章 控制系统的数学模型

2.4.2 积分环节

积分环节的传递函数为

$$G(s) = \frac{C(s)}{R(s)} = \frac{1}{Ts}$$ \hspace{2cm} (2-18)

积分环节实例很多，一个储藏物质或能量的原件或设备，以流量（指净流入与流出量之差）作为输入信号，而以表征储藏量多少的参数作为输出信号时，这种元件的动态特性就属于积分环节。如图 2-10 所示，为这一类积分环节的实例。图 2-10（a）中水位高度 H 与体积流量 $Q _ Q_2$ 之间、图 2-10（b）中的电容器电压 u_o 与电流 i 之间、图 2-10（c）中容器内介质温度 t 与单位时间净流入热量 q 之间，以及图 2-10（d）中容器压力 P 与流入气体流量 Q 之间都属于积分环节。
2.4.3 阶跃环节

微分环节有三种：理想微分环节、一阶微分环节和二阶微分环节。

1. 理想微分环节

理想微分环节的动态方程为

$$c(t) = \frac{dr(t)}{dt} \tag{2-19}$$

式中，$$r(t)$$ 为输入信号；
$$c(t)$$ 为输出信号；
$$\tau$$ 为微分环节的微分时间常数。
理想微分环节的传递函数为

$$G(s) = \frac{C(s)}{R(s)} = \tau s \tag{2-20}$$

2. 一阶微分环节

一阶微分环节的动态方程为

$$c(t) = \frac{dr(t)}{dt} + r(t) \tag{2-21}$$

一阶微分环节的传递函数为

$$G(s) = \frac{C(s)}{R(s)} = \tau s + 1 \tag{2-22}$$

3. 二阶微分环节

二阶微分环节的动态方程为

$$c(t) = \tau^2 \frac{d^2 r(t)}{dt^2} + 2\zeta \tau \frac{dr(t)}{dt} + r(t) \tag{2-23}$$

二阶微分环节的传递函数为

$$G(s) = \frac{C(s)}{R(s)} = \tau^2 s^2 + 2\zeta \tau s + 1 \tag{2-24}$$

如图 2-11 所示为微分环节的各种实例。
第 2 章 控制系统的数学模型

2.4.4 惯性环节

惯性环节又称为非周期环节，它的动态方程为

$$ T \frac{dc(t)}{dt} + c(t) = r(t) \quad (2-25) $$

式中，$r(t)$ 为输入信号；
$c(t)$ 为输出信号；
T 为惯性环节的时间常数。
惯性环节的传递函数为

$$ G(s) = \frac{C(s)}{R(s)} = \frac{1}{Ts + 1} \quad (2-26) $$

2.4.5 振荡环节

振荡环节的动态方程为

$$ T^2 \frac{d^2 c(t)}{dt^2} + 2\zeta T \frac{dc(t)}{dt} + c(t) = r(t) \quad (2-27) $$

又常用下面的形式表示:

$$ \frac{d^2 c(t)}{dt^2} + 2\zeta \omega_n \frac{dc(t)}{dt} + \omega_n^2 c(t) = \omega_n^2 r(t) $$

式中，$r(t)$ 为输入信号；
$c(t)$ 为输出信号；
T 为时间常数；
ω_n 为无阻尼自然振荡频率, $\omega_n = \frac{1}{T}$；
ζ 为阻尼比, $0 < \zeta < 1$。
振荡环节的传递函数为

$$ G(s) = \frac{C(s)}{R(s)} = \frac{1}{T^2s^2 + 2\zeta Ts + 1} = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \quad (2-28) $$

2.4.6 延迟环节

延迟环节又称为滞后环节，它的输出量经过一个延迟时间 τ 后，完全复现输入信号，如图 2-12 所示，它的动态方程为
自动控制原理

\[c(t) = r(t - \tau) \] \hspace{1cm} (2-29)

式中，\(r(t) \) 为输入信号；

\(c(t) \) 为输出信号；

\(\tau \) 为延迟环节的时间常数。

![图 2-12 延迟环的单位阶跃响应](image)

延迟环节的传递函数为

\[G(s) = \frac{C(s)}{R(s)} = e^{-\tau s} \] \hspace{1cm} (2-30)

生产实际中的液压、气动或机械传动系统等都有不同程度的延迟现象。

以上为控制系统的典型环节，对应的动态方程及其传递函数见表 2-1。

表 2-1 典型环节及其传递函数

<table>
<thead>
<tr>
<th>序号</th>
<th>名称</th>
<th>动态微分方程</th>
<th>传递函数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>比例环节</td>
<td>(c(t) = Kr(t))</td>
<td>(K)</td>
</tr>
<tr>
<td>2</td>
<td>积分环节</td>
<td>(c(t) = \int_0^t r(\tau) d\tau)</td>
<td>(\frac{1}{Ts})</td>
</tr>
<tr>
<td>3</td>
<td>微分环节</td>
<td>(c(t) = r \frac{dr(t)}{dt})</td>
<td>(rs)</td>
</tr>
<tr>
<td>4</td>
<td>惯性环节</td>
<td>(r \frac{dc(t)}{dt} + c(t) = r(t))</td>
<td>(\frac{1}{Ts+1})</td>
</tr>
<tr>
<td>5</td>
<td>振荡环节</td>
<td>(\ddot{c}(t) + 2ζ\omega_n \dot{c}(t) + \omega_n^2 c(t) = \omega_n^2 r(t))</td>
<td>(\frac{\omega_n^2}{s^2 + 2ζ\omega_n s + \omega_n^2})</td>
</tr>
<tr>
<td>6</td>
<td>延迟环节</td>
<td>(c(t) = r(t - \tau))</td>
<td>(e^{-\tau})</td>
</tr>
</tbody>
</table>

| 备注 | \(r(t) \) 为输入信号; \(c(t) \) 为输出信号 |

2.5 控制系统的结构图

控制系统的结构图是描述系统各组成元件之间信号关系的数学图形，是“动态结构图”的简称。在系统框图中，将方框对应的元件名称换成相应的传递函数，并将环节的输入量、输出量改用拉普拉斯变换表示后，就转换成相应的系统结构图。

用结构图表示的控制系统数学模型的主要优点：首先是绘制容易；其次是结构图能直观地表示出系统中环节之间信号的流通路径以及信号传递之间的动态关系；再次是通过某些法则进
行简化后，容易求出系统的总传递函数；最后是通过结构图，有利于分析研究组成系统的各环节对控制系统性能的影响。

2.5.1 结构图组成要素及绘制方法

1. **结构图的组成要素**

 系统（或环节）的结构图主要由 4 种图形符号组成，如图 2-13 所示。

 ![图 2-13 结构图的组成要素](image)

 (a) 信号线
 (b) 比较点
 (c) 分支点
 (d) 传递函数方框

 (1) **信号线**：带有箭头的有向直线，表示系统中的信号流通方向。通常在信号线的上方或下方标注该信号的拉普拉斯变换式，如图 2-13 (a) 所示。

 (2) **比较点**：又称为综合点或相加点，表示两个或两个以上的信号，在该点相加或相减。要注意的是，进行比较的信号必须具有相同的量纲；运算符号必须在其旁边标出，如图 2-13 (b) 所示。

 (3) **分支点**：又称为引出点，表示信号由该处引出。要注意的是，从同一信号引出的所有信号，都和该信号相同，如图 2-13 (c) 所示。

 (4) **传递函数方框**：表示环节输入变量与输出变量之间的关系。方框内要写入该环节的传递函数，进入函数方框的信号线，表示该环节输入信号的拉普拉斯变换式；传递函数方框出来的信号线，表示该环节输出信号的拉普拉斯变换式，如图 2-13 (d) 所示。

2. **结构图的绘制方法**

 在绘制系统结构图时，应根据系统的结构和工作原理，先绘制出各环节的结构图，然后依据系统信号的流通方向，将各环节的结构图连接起来，便得到系统的结构图。具体方法步骤如下：

 ① 从系统输入端开始，把系统分为若干个基本环节（或称为基本元件），建立各基本环节的微分方程。

 ② 对各基本环节的微分方程进行拉普拉斯变换，求出相应环节的传递函数，按绘制结构图的要素要求，建立各环节的结构图。部分典型环节的结构图如图 2-14 所示。

 ③ 按照系统中信号的流通顺序，依次用信号线将各基本环节的结构图连接起来，便得到系统的结构图。

 ![图 2-14 部分典型环节的结构图](image)

 (a) 比例环节
 (b) 惯性环节
 (c) 积分环节

【例 2-14】绘制如图 2-15 所示 RC 网络的结构图。
自动控制原理

图 2-15 RC 网络

【解】
（1）列出该网络的运动方程式。

\[I(s) = \frac{U_r(s) - U_c(s)}{R} \]

\[U_c(s) = \frac{1}{Cs} I(s) \]

（2）绘制上述元件对应的框图。
根据步骤（1）的运动方程，有如图 2-16 所示的框图。
（3）将各单元框图按信号流向依次连接，如图 2-17 所示。

【注意】
① 结构图只包含系统动态特性有关的信息，不完全包含系统物理部件的所有信息，即在物理部件上完全不同的系统，可以用相同的结构图来描述。
② 对于同一个系统，划分的环节不同，结构图也不同。即对于同一个系统，结构图并不是唯一的。但对同一个系统绘制的不同结构图中，系统输入变量与输出变量间的传递关系，即传递函数一定是相同的。

2.5.2 结构图的等效变换

建立结构图的最终目的是为了求取系统的传递函数，进而对系统性能进行分析。所以对于复杂结构图就需要进行等效变换，设法将其化简为一个等效的传递函数方框。结构图等效变换必须遵循的原则是：变换前、后总的数学关系保持不变，也就是变换前、后的输入量、输出量之间的关系保持不变。

由于结构图之间的基本连接方式只有串联、并联和反馈三种，所以结构图简化的一般方法是，先通过移动分支点或比较点，将结构图变换为上述三种基本连接方式，然后将结构图按串联、并联和反馈连接的简化方法进行结构图的合并。

1. 串联连接的等效

串联环节的等效变换如图 2-18 所示，可以由两个以上的环节框图组成，其特点是，前一个环节的输出信号为后一个环节的输入信号。
第 2 章 控制系统的数学模型

图 2-18 串联环节的等效变换

对于每一个环节方框，有

\[G_1(s) = \frac{C_1(s)}{R(s)}, \quad G_2(s) = \frac{C_2(s)}{C_1(s)}, \quad G_3(s) = \frac{C(s)}{C_2(s)} \]

则三个环节串联后，有

\[G(s) = G_1(s)G_2(s)G_3(s) = \frac{C_1(s)}{R(s)} \cdot \frac{C_2(s)}{C_1(s)} \cdot \frac{C(s)}{C_2(s)} = \frac{C(s)}{R(s)} \]

由此可见，三个串联环节可等效为一个环节，等效环节的传递函数为三个串联环节传递函数的乘积。

此结论可推广到 \(n \) 个环节的串联连接情况，其等效传递函数为

\[G(s) = G_1(s)G_2(s) \cdots G_n(s) = \prod_{i=1}^{n} G_i(s) \] (2.32)

2. 并联连接的等效

并联环节的等效变换如图 2-19 所示，其连接特点是各环节的输入信号相同，输出信号相加（或相减）。

图 2-19 并联环节的等效变换

由图 2-19 可列出如下方程:

\[C(s) = C_1(s) \pm C_2(s) \pm C_3(s) = G_1(s)R(s) \pm G_2(s)R(s) \pm G_3(s)R(s) \]

\[= \left[G_1(s) \pm G_2(s) \pm G_3(s) \right]R(s) = G(s)R(s) \]

则

$$G(s) = \frac{C(s)}{R(s)} = G_1(s) \pm G_2(s) \pm G_3(s)$$ \hspace{1cm} (2-33)

三个并联环节的等效传递函数为三个并联环节传递函数的代数和。

将此结论推广到 \(n \) 个环节并联的情况，其等效传递函数为

$$G(s) = \frac{C(s)}{R(s)} = G_1(s) \pm G_2(s) \pm \cdots \pm G_n(s)$$ \hspace{1cm} (2-34)

3. 反馈连接的等效

设传递函数分别为 \(G(s) \) 和 \(H(s) \) 的两个环节方框，以如图 2-20 所示的形式连接，则称为环节的反馈连接。“－”号为负反馈，表示输入信号与反馈信号相减；“＋”号为正反馈，表示输入信号与反馈信号相加。

由图 2-20 可列出如下方程：

$$\begin{align*}
C(s) &= E(s)G(s) \\
E(s) &= R(s) \mp B(s) \\
B(s) &= H(s)C(s)
\end{align*}$$

消除中间变量 \(E(s) \) 和 \(B(s) \)，得

$$\Phi(s) = \frac{C(s)}{R(s)} = \frac{G(s)}{1 \pm G(s)H(s)}$$ \hspace{1cm} (2-35)

式（2-35）中 “＋” 对应负反馈；“－” 对应正反馈。

4. 比较点的移动和互换

如图 2-21 所示表示比较点从环节之前移动到环节之后的情况，可见比较点移动后，输出信号 \(C(s) \) 与比较点移动前是等效的，图 2-22 表示比较点前移的情况。

5. 分支点的移动和互换

如图 2-23 和图 2-24 所示分别表示分支点从环节之前移动到环节之后和分支点从环节之后移
动到环节之前的等效变换情况。

![图2-23 分支点从环节之前移动到环节之后的等效变换](image)

![图2-24 分支点从环节之后移动到环节之前的等效变换](image)

6. 两个分支点、比较点之间的互换

如图2-25所示表示两个分支点、比较点互换的情况。注意的是分支点和相加点之间不能像图中所示那样互换位置。

![图2-25 分支点和比较点的互换](image)

以上为结构图简化所需的等效变换方式，具体规则见表2-2。

<table>
<thead>
<tr>
<th>变换名称</th>
<th>变换前</th>
<th>变换后</th>
</tr>
</thead>
<tbody>
<tr>
<td>串联</td>
<td>$R(s)\rightarrow G_1(s)\rightarrow G_2(s)\rightarrow C(s)$</td>
<td>$R(s)\rightarrow G_1(s)G_2(s)\rightarrow C(s)$</td>
</tr>
<tr>
<td>并联</td>
<td>$R(s)\rightarrow G_1(s)\rightarrow G_2(s)\rightarrow C(s)$</td>
<td>$R(s)\rightarrow G_1(s)+G_2(s)\rightarrow C(s)$</td>
</tr>
<tr>
<td>反馈</td>
<td>$R(s)\rightarrow G(s)\rightarrow C(s)$</td>
<td>$R(s)\rightarrow \frac{G(s)}{1+G(s)H(s)}\rightarrow C(s)$</td>
</tr>
</tbody>
</table>
变换名称 | 变换前 | 变换后
--- | --- | ---
比较点后移 | ![比较点后移图](image1) | ![比较点后移图](image2) 1\(G(s)\)
比较点前移 | ![比较点前移图](image3) | ![比较点前移图](image4) 1\(G(s)\)
分支点前移 | ![分支点前移图](image5) | ![分支点前移图](image6)
分支点后移 | ![分支点后移图](image7) | ![分支点后移图](image8) 1\(G(s)\)
比较点换位 | ![比较点换位图](image9) | ![比较点换位图](image10)

【例 2-15】 试对如图 2-26（a）所示的系统结构图进行等效变换，并求传递函数\(\frac{C(s)}{R(s)}\)。

![图 2-26 例 2-15 图](image11)

【解】 如图 2-26（a）所示的结构图可以先行简分为如图 2-26（b）所示的结构图，这结构图显然是一个典型的反馈结构图。其最终的传递函数为
第 2 章 控制系统的数学模型

\[
G(s) = \frac{C(s)}{R(s)} = \frac{\frac{2s+4}{s^2}}{1+\frac{2s+4}{s^2}} = \frac{2s+4}{s^2 + 2s + 4}
\]

【MATLAB 实现】

```matlab
num1=[2];
den1=[1];
sysG1=tf(num1,den1); % 定义传递函数 1
num2=[4];
den2=[1 0];
sysG2=tf(num2,den2); % 定义传递函数 2
sysG3=parallel(sysG1,sysG2); % 求传递函数 3，是传递函数 1 和 2 的并联
num4=[1];
den4=[1 0];
sysG4=tf(num4,den4); % 定义传递函数 4
sysG5=series(sysG3,sysG4); % 求传递函数 5，是传递函数 3 和 4 的串联
num6=[1];
den6=[1];
sysG6=tf(num6,den6); % 定义传递函数 6，即反馈环节，放大系数为 1
sysClose=feedback(sysG5,sysG6,-1) % 求最终传递函数

sysClose =
  2 s + 4
-----------
  s^2 + 2 s + 4
```

【例 2-16】 试对如图 2-27 所示的结构图进行等效变换，并求 \(\frac{C(s)}{R(s)} \)。

【解】（1）如图 2-27 所示系统是具有引出点、比较点交叉的多回路结构。为了从内向外逐步简化，首先要消除交叉连接。方法之一是将前向通路的引出点 \(A \) 后移，然后与第二个引出点交换位置，如此可将图 2-27 等效变换为图 2-28（a）。
（2）对图 2-28（a）中由 \(G_i(s) \)、\(G_4(s) \)、\(H_4(s) \) 组成的小回路实行串联及反馈变换，进而
简化成图 2-28（b）。

（3）对图 2-28（b）中的内回路依次进行串联及反馈变换，得到图 2-28（c）。最后变换成一个方框，如图 2-28（d）所示，则系统最后传递函数为

\[
G(s) = \frac{G_1(s)G_2(s)G_3(s)G_4(s)}{1 + G_1(s)G_2(s)G_3(s)H_1(s) + G_2(s)G_4(s)H_2(s) + G_1(s)G_4(s)H_3(s)}
\]

图 2-28 例 2-16 系统结构图的等效变换

2.6 信号流程图与梅逊公式

信号流程图和结构图一样，是一种图形化的数学模型，它清晰表明了控制系统中变量之间的相互关系。应用信号流程图方法时，可以不必对结构图进行简化，而是直接用“梅逊公式”求出系统各变量间的关系以及系统输出量与输入量之间的传递函数，因此特别适合于比较复杂
控制系统

2.6.1 常用术语及其定义

信号流程图某种程度上与网络图相似，如图 2-29 所示。它由小圆圈 “○”、有向线段 “→” 和传输值 “a”（相当于传递函数）组成。下面结合图 2-29 介绍有关术语。

图 2-29 典型信号流程图

（1）节点。表示信号（变量），用小圆圈 “○” 表示。如图中 1x、2x、...、7x。节点又可分为下面三种：

1）源节点。只有输出支路的节点，又称为输入节点。对应于控制信号，如图 2-29 中的 1x。
2）汇节点。只有输入支路的节点，又称为输出节点。对应于被控制信号，如图 2-29 中的 7x。
3）混合节点。既有输入又有输出支路的节点。如图 2-29 中的 2x、3x、4x、5x、6x。

（2）支路。连接两节点间的有向线段，用 “→” 表示，箭头方向表示信号传递的方向。

（3）支路增益。标注在支路上如图 2-29 中的 1a，2a，...，-b1，...，-b2 等数值。表示两节点之间数值传递的关系。

（4）通路。沿着支路箭头方向，从一个节点到另一个节点的路径。其间每个节点只通过一次。通路又可分为下面三种：

1）前向通路。从源节点开始到汇节点结束的通路。如图 2-29 中的 1x → 2x → 3x → 4x → 5x → 6x → 7x。
2）闭通路。起点与终点为同一点，并且与其他任何节点相交于不多于一次的闭合路径，如图 2-29 中的 2x → 3x → 4x → 5x → 6x → 4b → 2x。
3）通路增益。通路中所有支路的增益之积。

（5）回路。就是闭通路，回路又可分为下面三种：

1）不接触回路。回路之间没有公共节点的回路，如图 2-29 所示的 3x → 4x → -b1 → 3x 和 3x → 4x → -b1 → 3x。
2）接触回路。回路之间有公共节点的回路，如图 2-29 所示的 2x → 3x → 4x → 5x → 6x → -b4 → x2 和 3x → 4x → -b1 → 3x。
3）自回路。只与一个节点相交的回路，如图 2-29 所示的 3x → 4b1 → 4x。

2.6.2 信号流程图绘制方法

信号流程图绘制的步骤如下：

1）确定输入量和输出量。
2）求出各个物理元件或部件的微分方程。
③ 对各个微分方程式取初始状态为零时的拉普拉斯变换，变成代数方程组。
④ 绘制每一个代数方程的信号流程图。

信号流程图绘制的方法如下：
设某代数方程（拉普拉斯变换后的方程）为
\[x_2(s) = G_1(s)[x_1(s) - x_3(s)] \]
式中的 \(x_1(s) \)、\(x_3(s) \) 是输入量，\(x_2(s) \) 是输出量，\(G_1(s) \) 为变量之间的传递函数。该方程式的信号流程图如图 2-30 所示。图中的小圆圈 “○” 表示节点（变量或信号），连接两节点间的有向线段为支路，箭头表示信号传递的方向，传递函数（增益）\(G_1(s) \) 标注在支路的上（或下）方。

图 2-30 拉普拉斯变换方程的信号流程图

最后把各部分的信号流程图按信号传递关系连接起来，进而得到整个环节或系统的信号流程图。下面通过绘制电路环节的信号流程图，具体说明绘制方法和步骤。

【例 2-17】 试绘制如图 2-31 所示二级 RC 滤波电路的信号流程图。

【解】 设输入量为 \(u_1 \) ，输出量为 \(u_3 \)，则微分方程组为
\[
\begin{align*}
\dot{i}_1 &= \frac{u_1 - u_2}{R_1} \\
\dot{i}_2 &= \dot{i}_1 - \dot{i}_3 \\
u_3 &= \frac{1}{C_2} \int i_3 \, dt \\
i_3 &= \frac{u_2 - u_3}{R_2} \\
u_2 &= \frac{1}{C_1} \int i_1 \, dt
\end{align*}
\]
对上面的微分方程取初始状态为零的拉普拉斯变换，可得代数方程：
\[
\begin{align*}
I_1(s) &= [U_1(s) - U_2(s)] \frac{1}{R_1} \\
I_2(s) &= I_1(s) - I_3(s) \\
U_3(s) &= \frac{1}{C_2 s} I_1(s)
\end{align*}
\]
第 2 章 控制系统的数学模型

$$I_3(s) = \left[U_2(s) - U_3(s) \right] \frac{1}{R_2}$$

$$U_2(s) = \frac{1}{C_1s} I_3(s)$$

绘制每一个拉普拉斯变换方程的信号流程图，再把各信号流程图按信号传递关系连接起来，从而得到整个环节的信号流程图，如图 2-32 所示。

图 2-32 二级 RC 滤波电路信号流程图

2.6.3 梅逊增益公式

梅逊增益公式简称为梅逊公式:

$$T = \frac{1}{\Delta} \sum_{k=1}^{n} T_k \Delta_k$$ (2-36)

式中，T 为输入和输出两变量间的传递关系或称为系统的总传递函数。

Δ 称为特征式，$\Delta = 1 - \sum L_1 + \sum L_2 - \sum L_3 + \cdots + (-1)^n \sum L_m$。

$\sum L_1$ 为信号流程图中，所有不同回路的传递函数之和。

$\sum L_2$ 为信号流程图中，每两个互不接触回路的传递函数乘积之和。

$\sum L_3$ 为信号流程图中，每三个互不接触回路的传递函数乘积之和。

$\sum L_m$ 为信号流程图中，每 m 个互不接触回路的传递函数乘积之和。

n 为从源节点（输入节点）到汇节点（输出节点）的前向通路的总条数。

T_k 为从源节点（输入节点）到汇节点（输出节点）第 k 条前向通路的总传递函数。

Δ_k 为第 k 条前向通路特征式的余因子。即在 Δ 中，将与第 k 条前向通路相接触的各回路除去后所余下的部分（即在特征式 Δ 中，把与第 k 条前向通路相接触回路的传递函数视为零后，所余下的部分）。

【注意】

① 首先正确无误地判断前向通路的条数和回路的个数。

② 仔细判定哪些回路是相互接触的，哪些回路是相互不接触的。

③ 仔细判定前向通路与哪些回路是有接触的，与哪些回路是没有接触的。

④ 从 1 到 n 的求和符号，它是对从源点到汇点之间全部前向通路上的传递函数（增益）与相应特征式的余因子相乘积的求和。
2.6.4 用梅逊公式求传递函数

利用梅逊公式，对复杂的信号流程图，可以不经过任何等效变换，直接求出系统中各变量间的关系式或系统输出量与输入量之间的总传递函数。

【例 2-18】利用梅逊公式求如图 2-33 所示信号流程图的输出量与输入量之间的传递函数。

![图 2-33 例 2-18 信号流程图](image)

【解】（1）找出图 2-33 所示信号流程图中所有的前向通路。
只有一条前向通路，通路的增益（传递函数）为
\[T_l = G_1G_2G_3G_4 \]

（2）找出系统中存在的所有的回路。
共有三个回路，回路的增益为
\[-G_2G_3G_6, -G_3G_4G_5, -G_1G_2G_3G_4G_7 \]

三个回路的增益之和为
\[\sum L_i = -G_2G_3G_6 - G_3G_4G_5 - G_1G_2G_3G_4G_7 \]

（3）这三个回路存在公共节点，即两两回路都有接触，则有
\[\sum L_2 = 0 \]

（4）由于这三个回路都与前向通路相接触，故余因子 \(\Delta_l = 1 \)。

（5）代入梅逊公式，可得
\[\frac{C(s)}{R(s)} = T = \frac{G_1G_2G_3G_4}{1 + G_2G_3G_6 + G_3G_4G_5 + G_1G_2G_3G_4G_7} \]

2.7 控制系统的传递函数

闭环控制系统的典型结构图如图 2-34 所示。图中控制系统在工作过程中，受到两类信号的作用，其中 \(R(s) \) 是参考输入或称给定值；\(N(s) \) 是各种干扰；\(C(s) \) 为系统的输出。下面我们讨论闭环控制系统各种输入量与输出量之间的传递函数。

研究被控量 \(c(t) \) 的变化规律，需要分别考虑 \(r(t) \) 和 \(n(t) \) 的影响。基于系统分析的需要，必须详细介绍各种类型传递函数的概念。
第2章 控制系统的数学模型

2.7.1 前向通路传递函数

闭环控制系统的前向通路传递函数是切断反馈通道, 输出信号的拉普拉斯变换 $C(s)$ 与输入信号的拉普拉斯变换 $R(s)$ 之比, 用 $G(s)$ 表示如下:

$$G(s) = \frac{C(s)}{R(s)} = G_1(s)G_2(s)$$

（2-37）

若扰动信号 $N(s)$ 为输入, $C(s)$ 为输出, 则前向通路的传递函数为

$$G(s) = \frac{C(s)}{N(s)} = G_2(s)$$

（2-38）

2.7.2 开环传递函数

开环传递函数指闭环控制系统反馈信号的拉普拉斯变换 $B(s)$ 与偏差信号的拉普拉斯变换 $E(s)$ 之比, 用 $G_k(s)$ 表示如下:

$$G_k(s) = \frac{B(s)}{E(s)} = G_1(s)G_2(s)H(s)$$

（2-39）

开环传递函数不是指开环控制系统的传递函数, 而是指闭环控制系统中的开环传递函数。开环传递函数是后面用根轨迹法和频域分析法分析系统的主要数学模型, 它在数值上等于系统的前向通路传递函数乘以反馈通路传递函数。

2.7.3 闭环传递函数

1. 给定信号 $R(s)$ 作用下的闭环传递函数

若要求 $R(s)$ 作用下的传递函数, 须令 $N(s) = 0$, 系统的结构图如图 2-35 所示。

若用 $\Phi_k(s)$ 表示系统在 $R(s)$ 作用下的闭环传递函数, 则利用结构图等效变换可得

$$\Phi_k(s) = \frac{C(s)}{R(s)} = \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)H(s)} = \frac{G_1(s)G_2(s)}{1 + G_k(s)} = \frac{G(s)}{1 + G_k(s)}$$

（2-40）

因此, 系统的输出为
自动控制原理

\[C(s) = \Phi(s)R(s) = \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)H(s)}R(s) = \frac{G_1(s)G_2(s)}{1 + G_K(s)}R(s) \quad (2-41) \]

2. 干扰信号 \(N(s) \) 作用下的闭环传递函数

若要求 \(N(s) \) 作用下的传递函数，需令 \(R(s) = 0 \)，系统的结构图如图 2-36 所示。

若用 \(\Phi_N(s) \) 表示系统在 \(N(s) \) 作用下的闭环传递函数，则利用结构图等效变换可得

\[\Phi_N(s) = \frac{C(s)}{N(s)} = \frac{G_2(s)}{1 + G_1(s)G_2(s)H(s)} = \frac{G_2(s)}{1 + G_K(s)} \quad (2-42) \]

因此，系统的输出为

\[C(s) = \Phi_N(s)N(s) = \frac{G_2(s)}{1 + G_1(s)G_2(s)H(s)}N(s) = \frac{G_2(s)}{1 + G_K(s)}N(s) \quad (2-43) \]

3. 系统总输出

根据线性叠加原理，线性系统的总输出等于各种外作用单独作用下的输出之和，故系统的总输出为

\[C(s) = \Phi_R(s)R(s) + \Phi_N(s)N(s) = \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)H(s)}R(s) + \frac{G_2(s)}{1 + G_1(s)G_2(s)H(s)}N(s) \quad (2-44) \]

4. 给定信号 \(R(s) \) 作用下的误差传递函数

系统分析时，除需要了解被控量 \(c(t) \) 的变化规律外，还需关注动态过程中误差的变化。误差大小直接反映系统的控制精度。这里取给定值 \(R(s) \) 与反馈量 \(B(s) \) 之差为系统误差 \(E(s) \)，即

\[E(s) = R(s) - B(s) \quad (2-45) \]

\(E(s) \) 与 \(R(s) \) 之比称为给定信号 \(R(s) \) 作用下的误差传递函数，用 \(\Phi_E(s) \) 表示。

令 \(N(s) = 0 \)，以 \(R(s) \) 为输入， \(E(s) \) 为输出的结构图如图 2-37 所示，可得
第 2 章 控制系统的数学模型

\[\Phi_{ER}(s) = \frac{E(s)}{R(s)} = \frac{1}{1 + G_1(s)G_2(s)H(s)} = \frac{1}{1 + G_K(s)} \] (2-46)

而给定信号 \(R(s) \) 作用下的误差为
\[E(s) = \Phi_{ER}(s)R(s) = \frac{1}{1 + G_1(s)G_2(s)H(s)} \cdot R(s) = \frac{1}{1 + G_K(s)} \cdot R(s) \] (2-47)

5. 干扰信号 \(N(s) \) 作用下的误差传递函数

令 \(R(s) = 0 \)，\(E(s) \) 与 \(N(s) \) 之比称为干扰信号作用下的误差传递函数，用 \(\Phi_{EN}(s) \) 表示。若干扰信号作用下误差输出的结构图如图 2-38 所示，则误差传递函数为

![图2-38 N(s)作用下的误差输出结构图](image)

\[\Phi_{EN}(s) = \frac{E(s)}{N(s)} = \frac{-G_2(s)H(s)}{1 + G_1(s)G_2(s)H(s)} = \frac{-G_2(s)H(s)}{1 + G_K(s)} \] (2-48)

而干扰信号 \(N(s) \) 作用下的误差为
\[E(s) = \Phi_{EN}(s)N(s) = \frac{-G_2(s)H(s)}{1 + G_1(s)G_2(s)H(s)} \cdot N(s) = \frac{-G_2(s)H(s)}{1 + G_K(s)} \cdot N(s) \] (2-49)

6. 系统总误差

根据叠加原理，系统的总误差为
\[E(s) = \Phi_{ER}(s)R(s) + \Phi_{EN}(s)N(s) \]
\[= \frac{1}{1 + G_1(s)G_2(s)H(s)} \cdot R(s) + \frac{-G_2(s)H(s)}{1 + G_1(s)G_2(s)H(s)} \cdot N(s) \] (2-50)

【注意】

① 由以上各式可以看出，系统在各种情况下的闭环传递函数都具有相同的分母多项式 \(1 + G_K(s) \)，我们称此多项式为闭环控制系统的特征多项式，将 \(1 + G_K(s) = 0 \) 称为闭环控制系统的特征方程。

② 若系统为单向负反馈，即 \(H(s) = 1 \)，则系统的前向通路传递函数为开环传递函数，可得闭环传递函数:
\[\Phi(s) = \frac{G(s)}{1 + G_1(s)G_2(s)H(s)} = \frac{G(s)}{1 + G(s)} = \frac{G_1(s)G_2(s)}{1 + G_K(s)} \] (2-51)

③ 若已知单位负反馈控制系统的闭环传递函数 \(\Phi_K(s) \)，则可求得其开环传递函数:
\[G_K(s) = \frac{\Phi_K(s)}{1 - \Phi_K(s)} \] (2-52)
2.8 传递函数的 MATLAB 描述

2.8.1 有理函数模型

线性系统的传递函数模型可一般地表示为

\[G(s) = \frac{b_0 s^n + b_1 s^{n-1} + \cdots + b_{m-1} s + b_m}{a_0 s^m + a_1 s^{m-1} + \cdots + a_{n-1} s + a_n}, \quad (n \geq m) \] (2-53)

将控制系统分子和分母多项式的系数按升幂的排列方式，以向量的形式输入两个变量 `num` 和 `den` 中，就可以轻易地将传递函数模型输入 MATLAB 中。

命令格式为

\[
\text{num} = [b_0, b_1, \cdots, b_m]; \\
\text{den} = [a_0, a_1, \cdots, a_n];
\] (2-54) (2-55)

在 MATLAB 控制系统工具箱中，定义了 `tf` 函数，它可由传递函数分子分母给出的变量构造出传递函数对象，从而使得系统模型的输入和处理更加方便。该函数的调用格式为

\[G = \text{tf}(\text{num},\text{den}); \] (2-56)

【例 2-19】已知控制系统的传递函数模型为

\[G(s) = \frac{s + 5}{s^4 + 2s^3 + 3s^2 + 4s + 5} \]

试用命令输入 MATLAB 工作空间。

【MATLAB 实现】

```matlab
num=[1 5]; % 分子多项式赋值
den=[1 2 3 4 5]; % 分母多项式赋值
G=tf(num,den); % 给传递函数 G 赋值
G =
    s + 5
-----------------------
    s^4 + 2 s^3 + 3 s^2 + 4 s + 5
```

这时对象 G 可以用来描述给定的传递函数模型，作为被其他函数调用的变量。

2.8.2 零极点模型

线性系统的传递函数还可以写成零点、极点的形式：

\[G(s) = \frac{(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)}, \quad (n \geq m) \] (2-57)

将系统增益、零点和极点以向量的形式输入给三个变量 `KGain`、`Z` 和 `P`，就可以将系统的零极点模型输入 MATLAB 工作空间中，命令格式为

\[KGain = K; \] (2-58)
\[Z = [z_1, z_2, \cdots, z_m]; \] (2-59)
第 2 章 控制系统的数学模型

\[P = [p_1, p_2, \cdots, p_n]; \tag{2-60} \]

在 MATLAB 控制工具箱中，定义了 \textit{zpk()} 函数，由它可通过以上三个 MATLAB 变量构造出零极点对象，用于简单地表示零极点模型。该函数的调用格式为

\[G = \textit{zpk}(Z, P, KGain); \tag{2-61} \]

【例 2-20】某系统的零极点模型为

\[G(s) = \frac{6(s+1.9294)(s+0.0353 \pm 0.9287j)}{(s+0.9567 \pm 1.2272j)(s-0.0433 \pm 0.6412j)} \]

试用零极点函数把传递函数输入到 MATLAB 工作空间中。

【MATLAB 实现】

| KGain=6; %增益赋值 |
| Z=[-1.9294,-0.0353+0.9287j,-0.0353-0.9287j]; %零点赋值 |
| P=[-0.9567+1.2272j,-0.9567-1.2272j,0.0433+0.6412j,0.0433-0.6412j]; %极点赋值 |
| G=zpk(Z,P,KGain) %以零极点形式给传递函数 G 赋值 |
| G = 6 \frac{(s+1.9294)(s^2 + 0.0706s + 0.8637)}{(s^2 - 0.0866s + 0.413)(s^2 + 1.913s + 2.421)} |

2.8.3 系统模型的连接和简化

控制系统的 LTI 模型（线性时不变系统）通过串联环节、并联环节和反馈环节，构成了复杂的系统结构，MATLAB 提供了多种计算模型连接的函数。

1. 串联环节

以串联方式连接的模型结构图如图 2-39 所示，可以利用 \textit{series()} 函数计算串联环节，命令格式为

\[G = \textit{series}(G1,G2); \tag{2-62} \]

串联环节也可以直接使用下面命令运算：

\[G = G1 * G2; \tag{2-63} \]

图 2-39 以串联方式连接的模型结构图

2. 并联环节

以并联方式连接的模型结构图如图 2-40 所示，可以使用 \textit{parallel()} 函数计算并联环节，命令格式为：

图 2-40 以并联方式连接的模型结构图
并联环节也可以直接使用下面命令运算:

\[G = G_1 + G_2; \] \hspace{1cm} (2-65)

3. 反馈环节

设反馈系统结构图如图 2-41 所示。
控制系统工具箱中提供了 \textit{feedback}() 函数，用来求取反馈连接下总的系统传递函数, 该函数调用格式如下:

\[\text{feedback}(G1,G2,\text{sign}); \] \hspace{1cm} (2-66)

其中变量 \text{sign} 用来表示正反馈或负反馈结构，若 \text{sign} = \text{-1} 表示负反馈系统的模型，若省略 \text{sign} 变量，则仍将表示负反馈结构；若 \text{sign} = 1 表示正反馈系统的模型。\text{G1} 和 \text{G2} 分别表示前向通路模型和反馈通路模型的 LTI(线性时不变系统)对象。

【例 2-21】若反馈系统图 2-41 中的两个传递函数分别为

\[G_1(s) = \frac{1}{(s+1)^2}, \quad G_2(s) = \frac{1}{s+1} \]

试用反馈系统的函数形式求解传递函数。

【\texttt{MATLAB} 实现】

```
G1=tf(1,[1,2,1]);  \hspace{1cm} \% 给 G1 赋值
G2=tf(1,[1,1]); \hspace{1cm} \% 给 G2 赋值
G=feedback(G1,G2) \hspace{1cm} \% 给反馈模型传递函数 G 赋值
G =
   s + 1
-----------------
   s^3 + 3 s^2 + 3 s + 2
```

2.8.4 有理分式模型与零极点模型的转换

在控制系统工具箱中，可以由 \textit{zpk}() 函数实现有理分式模型向零极点模型的转换。该函数的调用格式为

\[G_1 = \text{zpk}(G) \] \hspace{1cm} (2-67)

【例 2-22】给定系统传递函数为

\[G(s) = \frac{6.8s^2 + 61.2s + 95.2}{s^4 + 7.5s^3 + 22s^2 + 19.5s} \]

试求对应的零极点。

【\texttt{MATLAB} 实现】

```
num=[6.8,61.2,95.2]; \hspace{1cm} \% 分子多项式赋值
den=[1,7.5,22,19.5,0]; \hspace{1cm} \% 分母多项式赋值
G=tf(num,den); \hspace{1cm} \% 给传递函数赋值
G1=zpk(G) \hspace{1cm} \% 以零极点形式表示传递函数
```
第 2 章 控制系统的数学模型

\[
G_1 = \frac{6.8(s+7)(s+2)}{s(s+1.5)(s^2+6s+13)}
\]

同样，对于给定的零极点模型，也可以直接由 MATLAB 语句立即求出等效传递函数模型。调用格式为

\[G_1 = tf(G)\] (2-68)

习 题

2-1 试求如图 2-42 所示各弹簧阻尼减震部件的微分方程和传递函数。

2-2 单容水箱液位控制系统原理图如图 2-43 所示，试求系统的传递函数 \(G(s) = \frac{H(s)}{Q(s)}\)。
2-3 如图2-44所示是恒温室控制系统原理示意图，其中恒温室送风量为 \(G \)，送风温度为 \(t_s \)，回风温度即室内温度为 \(t \)，由人、照明设备等向室内的散热量为 \(Q \)，室外温度为 \(t_w \)，由室外传入室内的热量为 \(Q_w \)，恒温室的热容量为 \(c_r \)，恒温室的容积为 \(V \)。假设室内温度 \(t \) 为系统的输出信号，送风温度 \(t_s \) 为系统的输入信号。试建立恒温室系统的数学模型。

![图2-44 恒温室控制系统原理示意](image)

2-4 试分别写出如图2-45所示的各无源网络的微分方程式。

![图2-45 无源网络结构图](image)

2-5 设初始条件为零，试用拉普拉斯变换求解下列微分方程式。

(1) \(2 \frac{dx(t)}{dt} + x(t) = t \)

(2) \(\frac{d^2 x(t)}{dt^2} + \frac{dx(t)}{dt} + x(t) = \delta(t) \)

(3) \(\frac{d^2 x(t)}{dt^2} + 2 \frac{dx(t)}{dt} + x(t) = 1(t) \)

2-6 试化简如图2-46所示的系统结构图，并求传递函数 \(\frac{C(s)}{R(s)} \)。
2-7 试求如图 2-47 所示系统的传递函数 $\frac{C(s)}{R(s)}$。

图 2-47 系统结构图

2-8 试简化如图 2-48 所示的结构图，求出系统的传递函数，并绘制出等效信号流程图，使用梅逊公式求出传递函数，试比较两者结果是否相同。

图 2-48 系统结构图

2-9 飞机俯仰角控制系统结构图如图 2-49 所示，试简化结构图并求出闭环传递函数 $\frac{\theta_e(s)}{\theta(s)}$。

2-10 试简化如图 2-50 所示中的系统结构图，并求出传递函数 $\frac{C(s)}{R(s)}$ 和 $\frac{C(s)}{N(s)}$。
2-11 已知系统的结构图如图 2-51 所示，试求传递函数 \(\frac{C(s)}{R(s)} \) 和 \(\frac{C(s)}{N(s)} \)。
2-12 某控制系统结构图如图 2-52 所示。试求:
(1) 输入量、各扰动分别作用下与输出量间的传递函数。
(2) 输入量、各扰动量共同作用下，系统输出的拉普拉斯变换式。
控制系统的时域分析法

教学要求与学习目标

（1）掌握典型信号输入的表达式和时域性能指标的具体公式。
（2）掌握一阶系统和二阶系统，在阶跃输入下的动态响应公式及指标参数。
（3）掌握劳斯判据及劳斯表的编写。
（4）掌握控制系统的误差分析及计算。
（5）熟练掌握使用 MATLAB 计算系统稳态误差的方法。
（6）了解高阶系统的稳定性分析。

知识要点

（1）典型输入信号。典型输入信号数学表达式、图形形式。
（2）一阶系统和二阶系统。一阶系统和二阶系统的数学模型、阶跃输入下的数学表达式、具体时域指标公式、影响因素。
（3）劳斯判据。劳斯表、劳斯判据及特殊情况的处理。
（4）MATLAB 求解稳态误差。MATLAB 计算系统稳态误差的语句。

在经典控制理论中，常采用时域法、根轨迹法和频域分析法来分析、设计线性定常系统。本章讨论时域分析法的主要内容。

时域分析法是根据描述系统的微分方程或传递函数，直接求解出在某个物理量输入作用下系统输出量随时间变化的表达式。然后根据此表达式或相应的描述曲线来分析系统的稳定性、动态特性和稳态特性。

时域分析法直观，物理概念清晰，比较准确及能提供系统时间响应的全部信息。
第 3 章 控制系统的时域分析法

3.1 典型输入信号及时域性能指标

控制系统的输出响应就是控制系统的数学模型的解。系统的输出响应不仅取决于系统本身的结构、参数、初始状态，而且和输入信号的形式有关。初始状态可以作统一规定，如规定为零初始状态。如果将输入信号规定为统一的形式，则系统响应由系统本身的结构、参数来确定，因而更便于对各种系统进行比较和研究。

设描述线性定常系统的闭环传递函数为 $\Phi(s)$，$R(s)$ 表示给定输入的拉普拉斯变换式，$C(s)$ 表示输出的拉普拉斯变换式。在零初始条件下，则有

$$C(s) = \Phi(s) R(s) \quad (3-1)$$

对上式两边取拉普拉斯反变换，得到系统输出的时域解

$$c(t) = L^{-1}[C(s)] = L^{-1}[\Phi(s) R(s)] \quad (3-2)$$

式（3-2）表明，系统输出取决于两个因素：输入信号的形式和系统的结构即闭环传递函数。

3.1.1 典型输入信号

1. 阶跃函数

阶跃函数信号的数学描述为

$$r(t) = \begin{cases} 0, & t < 0 \\ A, & t \geq 0 \end{cases} \quad (3-3)$$

其拉普拉斯变换式为

$$R(s) = \frac{A}{s} \quad (3-4)$$

A 为阶跃函数的幅值。当 $A = 1$ 时，称为单位阶跃函数，记作 $r(t) = 1(t)$，如图 3-1（a）所示。
自动控制原理

2. 斜坡函数

斜坡函数又称为速度函数，用数学方式描述为

\[r(t) = \begin{cases}
0, & t < 0 \\
At, & t \geq 0
\end{cases} \tag{3-5} \]

其拉普拉斯变换式为

\[R(s) = \frac{A}{s} \tag{3-6} \]

\(A \) 为恒幅值，当 \(A = 1 \) 时，称为单位斜坡函数，记作 \(r(t) = t \)，如图 3-1 (b) 所示。

3. 加速度函数

加速度函数又称为抛物线函数，用数学方式描述为

\[r(t) = \begin{cases}
0, & t < 0 \\
\frac{1}{2} At^2, & t \geq 0
\end{cases} \tag{3-7} \]

其拉普拉斯变换式为

\[R(s) = \frac{A}{s} \tag{3-8} \]

\(A \) 为恒幅值，当 \(A = 1 \) 时，式（3-8）称为单位加速度函数，记作 \(r(t) = \frac{1}{2} t^2 \)，如图 3-1 (c) 所示。

4. 脉冲函数

脉冲函数的数学表达式为

\[r(t) = \begin{cases}
0, & t < 0, t > \varepsilon (\varepsilon \rightarrow 0) \\
A/\varepsilon, & 0 < t < \varepsilon (\varepsilon \rightarrow 0)
\end{cases} \tag{3-9} \]

其拉普拉斯变换式为

\[R(s) = A \tag{3-10} \]

当 \(A = 1, \varepsilon \rightarrow 0 \) 时，式（3-10）称为单位脉冲函数，记作 \(\delta(t) \)，如图 3-1 (d) 所示。单位脉冲函数的面积等于 1，即

\[\int_{-\infty}^{\infty} \delta(t)dt = 1 \]

单位脉冲函数 \(\delta(t) \) 在现实中是不存在的，它只是数学上有意义，但却是一种非常重要的输入信号。

4. 正弦函数

正弦函数的数学表达式为

\[r(t) = A \sin \omega t \tag{3-11} \]

它是常用的典型输入信号之一，其中，\(A \) 是振幅，\(\omega \) 是角频率，如图 3-1 (e) 所示。正弦
函数的拉普拉斯变换式为

$$R(s) = \frac{A_0}{s^2 + \omega^2}$$ \hspace{1cm} (3-12)

【注意】

① 在分析控制系统时，究竟选用哪一种输入信号作为系统的试验信号，应视所研究系统的实际输入信号而定。

② 若系统的输入是一个突变的量，则应取阶跃输入信号；若系统的输入信号是随时间线性增加的函数，则应选择斜坡输入信号；若系统的输入信号是一个瞬时冲击信号，则应选择脉冲输入信号。

3.1.2 时域性能指标

初始状态为零的控制系统，典型输入作用下的输出，称为典型时间响应。通常把响应过程分为两部分：动态过程和稳态过程。

（1）动态过程：指系统从初始状态到调节时间 t_r 的响应过程。动态过程提供有关系统平稳性的信息，用动态性能指标描述。

（2）稳态过程：指系统从调节时间 t_r 后，到趋于无穷大时的系统输出状态。它表征系统的输出量最终复现输入量的程度，用稳态性能即稳态误差来描述。

一般认为，阶跃输入对系统来说是最严峻的工作状态，如果系统在阶跃函数作用下的动态性能满足要求，那么系统在其他形式的函数作用下，其动态性能也能满足要求。因此，通常在阶跃函数作用下测定或计算系统的动态性能。

如图 3-2 所示是单位阶跃输入下，系统的典型响应曲线，下面讨论其动态性能指标。

![单位阶跃输入下的典型响应曲线](image)

图 3-2 单位阶跃输入下的典型响应曲线

1. 上升时间 t_r

指响应从零第一次上升到终值所需的时间，对于非振荡系统也可定义为响应从终值 10% 上升到 90% 所需的时间。上升时间是系统响应速度的一种度量，上升时间越短，响应速度越快。
2. 峰值时间 t_p
指响应超过其终值后，到达第一个峰值所需的时间。

3. 调节时间 t_s
指响应曲线进入我们定义的误差带（终值的 $\pm 2\%$ 或 $\pm 5\%$），之后保持在此误差带内所需的最短时间。调节时间反映的是动态过程的快速性。

4. 超调量 $\%$
超调量 $\%$ 定义如下:
$$\sigma\% = \left(\frac{c(t_p) - c(\infty)}{c(\infty)} \right) \times 100\% \tag{3-13}$$
式中，$c(t_p)$ 是响应曲线的最大瞬时值；$c(\infty)$ 是响应曲线的稳态值。超调量反映的是过渡过程的平稳性。

5. 稳态误差 e_{ss}
指系统进入稳态过程后，输出期望值与实际值的差值。一般定义如下：当时间 t 趋于无穷大时，系统单位阶跃响应的理论值与期望值之差，反映了系统最终输出量与期望值之间的差值，是系统控制精度高低的标志。

根据 2.1.2 终值定理，则有
$$e_{ss}(\infty) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) \tag{3-14}$$
式中，$E(s)$ 为误差信号的拉普拉斯变换式。

3.2 一阶系统的时域分析

控制系统的输入量与输出量之间只要可以用一阶常微分方程表示，就称为一阶系统。一阶系统的数学模型为一阶微分方程，即
$$T \frac{dc(t)}{dt} + c(t) = r(t) \tag{3-15}$$
式中，T 为时间常数。如图 3-3 所示为一阶系统的动态结构图。

![图 3-3 一阶系统的动态结构图](image)

图 3-3 所示的闭环传递函数为
$$\Phi(s) = \frac{C(s)}{R(s)} = \frac{1}{Ts + 1} \tag{3-16}$$
3.2.1 一阶系统的单位阶跃响应

单位阶跃输入的拉普拉斯变换为

\[R(s) = \frac{1}{s} \]

则输出为

\[C(s) = \Phi(s)R(s) = \frac{1}{Ts+1} \cdot \frac{1}{s} \]

对 \(C(s) \) 进行拉普拉斯反变换，可得单位阶跃响应为

\[
c(t) = L^{-1} \left[\frac{1}{Ts+1} \cdot \frac{1}{s} \right] = L^{-1} \left[\frac{-T}{Ts+1} + \frac{1}{s} \right] = 1 - e^{-\frac{t}{T}} \quad (3-17)
\]

由此可见，一阶系统的单位阶跃响应是一条初始值为零并以指数规律上升到终值 \(c(\infty) = 1 \) 的曲线。如图3-4所示，一阶系统的阶跃响应是非周期响应，时间常数 \(T \) 是表征响应特性的唯一参数。输出值与时间的关系见表3-1：

<table>
<thead>
<tr>
<th>(t)</th>
<th>(c(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>0.632</td>
</tr>
<tr>
<td>(2T)</td>
<td>0.865</td>
</tr>
<tr>
<td>(3T)</td>
<td>0.950</td>
</tr>
<tr>
<td>(4T)</td>
<td>0.982</td>
</tr>
</tbody>
</table>

由于一阶系统响应曲线无超调，所以峰值时间 \(t_p \) 和超调量 \(\sigma% \) 不存在。其主要性能指标如下：

1. 上升时间 \(t_r = 2.2T \)，即响应从终值 10% 上升到 90% 所需的时间。
2. 调节时间 \(t_s = 3T \)，对应 5% 误差带；或 \(t_s = 4T \)，对应 2% 的误差带。

【注意】

1. 调节时间 \(t_s \) 是根据系统性能要求而定，即可以根据系统要求来定义不同的误差带。
2. 系统的时间常数 \(T \) 越小，调节时间越小，响应越快。
3. 在 \(t = 0 \) 时响应曲线的切线斜率为 \(\frac{1}{T} \)，其物理意义如下：若输出 \(c(t) \) 一直按初始增长，
则在 $t = T$ 时刻输出到达稳态值 $c(\infty) = 1$。这一特点为实验方法求取系统的时间常数 T 提供了依据。

【例 3-1】已知一阶系统的闭环传递函数为 $\phi(s) = \frac{1}{2s + 1}$，试求单位阶跃输入情况下的时间响应。

【解】由式 (3-17)，可得

$$c(t) = L^{-1}\left[\frac{1}{2s + 1} \cdot \frac{1}{s}\right] = L^{-1}\left[\frac{-2}{2s + 1} + \frac{1}{s}\right] = 1 - e^{-\frac{t}{2}}$$

【MATLAB 实现】

```matlab
clear all  % 内存清零
clc       % 清屏	num=[1]; den=[2,1];  %单位阶跃响应
step(num,den);  % 绘制单位阶跃响应曲线
grid       %绘制网格
title('单位阶跃响应');xlabel('时间');ylabel('输出 c(t)');
```

一阶系统单位阶跃响应曲线如图 3-5 所示。

3.2.2 一阶系统的单位斜坡响应

单位斜坡输入的拉普拉斯变换为

$$R(s) = \frac{1}{s^2}$$

则输出为
第3章 控制系统的时域分析法

\[C(s) = \Phi(s)R(s) = \frac{1}{Ts + 1} \cdot \frac{1}{s^2} \]

对 \(C(s) \) 进行拉普拉斯反变换，可得单位斜坡响应

\[c(t) = L^{-1} \left[\frac{1}{Ts + 1} \cdot \frac{1}{s^2} \right] = L^{-1} \left[\frac{1}{s^2} - \frac{T}{s} + \frac{T^2}{Ts + 1} \right] \]

\[= t - T + Te^{-\frac{t}{T}} \quad (3-18) \]

式中，\((t-T)\)为响应的稳态分量；\(Te^{-\frac{t}{T}}\)为响应的瞬态分量。当时间趋于无穷大时，瞬态分量衰减为零。如图3-6所示为一阶系统单位斜坡响应曲线。

【注意】

① 一阶系统单位斜坡响应，输出量与输入量之间存在跟踪误差，且稳态误差值与系统时间常数 \(T \) 相等。

② 从提高斜坡响应的精度来看，要求一阶系统时间常数 \(T \) 要小。

③ 系统的斜坡响应在MATLAB中没有专门函数，因此，斜坡响应可以由阶跃响应来获得：

\[\text{斜坡响应} = \text{阶跃响应} \times \frac{1}{s} \]

【例3-2】例3-1中的传递函数，求单位斜坡输入情况下时间响应。

【解】 由式(3-18)可得

\[c(t) = L^{-1} \left[\frac{1}{2s + 1} \cdot \frac{1}{s^2} \right] = L^{-1} \left[\frac{1}{s^2} - \frac{2}{s} + \frac{2^2}{2s + 1} \right] \]

\[= t - 2 + 2e^{-\frac{t}{2}} \]

图3-6 一阶系统单位斜坡响应曲线

【注意】

① 一阶系统单位斜坡响应，输出量与输入量之间存在跟踪误差，且稳态误差值与系统时间常数 \(T \) 相等。

② 从提高斜坡响应的精度来看，要求一阶系统时间常数 \(T \) 要小。

③ 系统的斜坡响应在MATLAB中没有专门函数，因此，斜坡响应可以由阶跃响应来获得：

\[\text{斜坡响应} = \text{阶跃响应} \times \frac{1}{s} \]

【例3-2】例3-1中的传递函数，求单位斜坡输入情况下时间响应。

【解】 由式(3-18)可得

\[c(t) = L^{-1} \left[\frac{1}{2s + 1} \cdot \frac{1}{s^2} \right] = L^{-1} \left[\frac{1}{s^2} - \frac{2}{s} + \frac{2^2}{2s + 1} \right] \]

\[= t - 2 + 2e^{-\frac{t}{2}} \]
【MATLAB 实现】

```matlab
% 内存清零
num=[1]; den=[2,1];
G1=tf(num,den);
G2=tf(1,[1,0]);
G3=G1*G2;
subplot(1 2 1);
step(G3);
% 绘制单位斜坡响应曲线
grid
title('单位斜坡响应'); xlabel('时间'); ylabel('响应');
G4=G3*G2;
subplot(1 2 2);
step(G4);
% 绘制单位加速度响应曲线
grid
title('单位加速度响应'); xlabel('时间'); ylabel('响应');
```

一阶系统单位斜坡和单位加速度响应曲线如图 3-7 所示。

![一阶系统单位斜坡和单位加速度响应曲线](image)

3.2.3 一阶系统的单位脉冲响应

单位脉冲输入的拉普拉斯变换为

\[R(s) = 1 \]

则输出为
第3章 控制系统的时域分析法

\[C(s) = \Phi(s)R(s) = \frac{1}{Ts + 1} \times 1 \]

对 \(C(s) \) 进行拉普拉斯反变换，可得单位斜坡响应为

\[c(t) = L^{-1} \left[\frac{1}{Ts + 1} \cdot 1 \right] = \frac{1}{T} e^{\frac{-t}{T}} \] (3-19)

令 \(t \) 分别等于 \(T \)、\(2T \)、\(3T \) 和 \(4T \)，可以绘制出一阶系统单位脉冲响应曲线，如图3-8所示。由图可见，一阶系统的脉冲响应为一单调下降的指数曲线。若定义该指数曲线衰减至初始值的5%所需的时间为脉冲响应的调节时间，则 \(t_r = 3T \)。

图3-8 一阶系统单位脉冲响应曲线

3.2.4 一阶系统的单位加速度响应

单位加速度输入信号 \(r(t) = \frac{1}{2} t^2 \)，其拉普拉斯变换为

\[R(s) = \frac{1}{s^3} \]

则输出为

\[C(s) = \Phi(s)R(s) = \frac{1}{Ts + 1} \cdot \frac{1}{s^3} \]

对 \(C(s) \) 进行拉普拉斯反变换，可得单位斜坡响应为

\[c(t) = L^{-1} \left[\frac{1}{Ts + 1} \cdot \frac{1}{s^3} \right] = \frac{1}{2} t^2 - Tt + T^2 \left(1 - e^{\frac{-t}{T}} \right) \] (3-20)

上式表明，当时间 \(t \) 趋于无穷大时，系统输出信号与输入信号之差将趋于无穷大。这意味着对于一阶系统是不能跟踪单位加速度输入信号的。一阶系统的单位加速度响应曲线如图3-7(b)所示。
3.3 二阶系统的时域分析

凡是使用二阶微分方程描述的系统称为二阶系统，在工程设计中，二阶系统不乏其例。特别是不少高阶系统在一定条件下可用二阶系统的特性来近似表征，因此研究典型二阶系统的分析和计算方法，具有广泛的实际意义。

3.3.1 典型的二阶系统模型

二阶系统的数学模型为二阶微分方程，即

$$\frac{d^2 c(t)}{dt^2} + 2\zeta \omega_n \frac{dc(t)}{dt} + \omega_n^2 c(t) = \omega_n^2 r(t) \quad (3-21)$$

其传递函数为

$$\Phi(s) = \frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} = \frac{1}{T^2 s^2 + 2\zeta Ts + 1} \quad (3-22)$$

式中，$$T = \frac{1}{\omega_n}$$ 为二阶系统的时间常数；$$\zeta$$ 为二阶系统的阻尼比；$$\omega_n$$ 为无阻尼振荡频率或称无阻尼自然振荡角频率，它们是二阶系统重要的几个参数，系统的响应特性完全取决于这些参数。如图3-9所示为典型二阶系统结构图。

![图3-9 典型二阶系统结构图](image)

3.3.2 二阶系统的单位阶跃响应

因为单位阶跃输入信号的拉普拉斯变换为 $$R(s) = \frac{1}{s}$$，所以在零初始条件下，单位阶跃信号作用下的系统输出为

$$C(s) = \Phi(s) R(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \cdot \frac{1}{s} \quad (3-23)$$

对上式进行拉普拉斯反变换，可得单位阶跃响应为

$$c(t) = L^{-1}[C(s)] = L^{-1}\left[\frac{\omega_n^2}{(s-s_1)(s-s_2)}\right] = L^{-1}\left[\frac{C_1}{s-s_1} + \frac{C_2}{s-s_2} + \frac{1}{s}\right]$$

式中，$$C_1$$、$$C_2$$ 为待定系数。

二阶系统的特征方程为

$$s^2 + 2\zeta \omega_n s + \omega_n^2 = 0 \quad (3-24)$$

则方程的特征根为

$$s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1} = -\zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta^2}, \quad 0 < \zeta < 1 \quad (3-25)$$
【注意】
① 当 $0<\zeta<1$ 时，特征根是一对共轭复根，称为欠阻尼状态；
② 当 $\zeta=1$ 时，特征根是两个相同的负实数，称为临界阻尼状态；
③ 当 $\zeta>1$ 时，特征根是两个不相等的负实数，称为过阻尼状态；
④ 当 $\zeta=0$ 时，特征根是一对纯虚数，称为无阻尼状态。

1. 欠阻尼二阶系统的单位阶跃响应 $(0<\zeta<1)$

$$
C(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \cdot \frac{1}{s} = \frac{1}{s} - \frac{\zeta\omega_n}{s(s + \zeta\omega_n)^2 + (\omega_n\sqrt{1-\zeta^2})^2} \quad (3-26)
$$

对 $C(s)$ 进行拉普拉斯反变换后，得到欠阻尼二阶系统的单位阶跃响应为

$$
c(t) = 1 - e^{-\zeta\omega_n t} \left(\cos \omega_n \sqrt{1-\zeta^2} t + \frac{\zeta}{\sqrt{1-\zeta^2}} \sin \omega_n \sqrt{1-\zeta^2} t \right) \quad (3-27)
$$

将 (3-27) 通过三角函数公式可简化为

$$
c(t) = 1 - \frac{e^{-\omega_n \sqrt{1-\zeta^2} t}}{\sqrt{1-\zeta^2}} \sin \left(\omega_n \sqrt{1-\zeta^2} t + \phi \right) \quad (3-28)
$$

式中，$\phi = \tan^{-1} \frac{\sqrt{1-\zeta^2}}{\zeta} = \cos^{-1} \zeta$，是输出信号 $c(t)$ 的初相角。其响应曲线如图 3-10 所示。
式（3-28）和响应曲线表明，欠阻尼二阶系统的单位阶跃响应由两部分组成：
① 稳态分量为 1，表明此系统在单位阶跃函数作用下不存在稳态误差。
② 瞬态分量为阻尼正弦振荡项，其振荡频率为 \(\omega_h = \omega_n \sqrt{1 - \zeta^2} \)（称为阻尼振荡频率）。

由于瞬态分量衰减的快慢程度取决于包络线 \(1 \pm \frac{e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \) 收敛速度，而当阻尼比 \(\zeta \) 一定时，包络线的收敛速度又取决于指数函数 \(e^{-\zeta \omega_n t} \) 的幂，所以称 \(\sigma = \zeta \omega_n \) 为衰减系数。后续章节可以证明，一般 \(\zeta = 0.707 \) 为最佳阻尼比。

2. 临界阻尼二阶系统的单位阶跃响应（\(\zeta = 1 \)）

当 \(\zeta = 1 \)，则输出为

\[
C(s) = \frac{\omega_n^2}{s(s + \omega_n)} = \frac{1}{s} - \frac{\omega_n}{s + \omega_n}
\]

对（3-29）进行拉普拉斯反变换，得到临界阻尼二阶系统的单位阶跃响应为

\[
c(t) = 1 - e^{-\omega_n t}(1 + \omega_n t)
\]

临界阻尼二阶系统的单位阶跃响应曲线如图 3-10 所示，显然是稳态值为 1 的无超调单调上升过程，响应过程最后趋于常值 1。

3. 过阻尼二阶系统的单位阶跃响应（\(\zeta > 1 \)）

当 \(\zeta > 1 \)，二阶系统的闭环特征根方程有两个不相等的负实根，可表示为

\[
s^2 + 2\zeta \omega_n s + \omega_n^2 = \left(s + \frac{1}{T_1} \right) \left(s + \frac{1}{T_2} \right) = 0
\]

式中，\(T_1 = \frac{1}{\omega_n (\zeta - \sqrt{\zeta^2 - 1})} \)，\(T_2 = \frac{1}{\omega_n (\zeta + \sqrt{\zeta^2 - 1})} \)，且 \(T_1 > T_2 \)，则闭环传递函数为

\[
C(s) = \frac{\omega_n^2}{R(s) \left(s + \frac{1}{T_1} \right) \left(s + \frac{1}{T_2} \right)}
\]

因此，过阻尼二阶系统可以看成是两个时间常数不同的惯性环节的串联。

当输入信号为单位阶跃函数时，系统的输出为

\[
c(t) = 1 + \frac{e^{\frac{t}{T_2}}}{T_2} + \frac{e^{\frac{t}{T_1}}}{T_1}
\]

式（3-31）表明，过阻尼状态的单位阶跃响应是非振荡单调上升过程，不会超过稳态值 1。如图 3-11 所示是其阶跃响应曲线，该响应是非振荡的，但它是由两个惯性环节串联而产生，所以不同于一阶系统的单位阶跃响应，其起始阶段上升速度很小，然后逐渐加大到某一值后又减小，直到趋于零。因此，整个响应曲线有一个拐点。
第 3 章 控制系统的时域分析法

图 3-11 过阻尼二阶系统的单位阶跃响应

由图 3-10 可知，\(\zeta \) 越小，系统响应的振荡越激烈；当 \(\zeta > 1 \) 时，输出变成单调上升的非振荡过程。

4. 无阻尼二阶系统的单位阶跃响应 (\(\zeta = 0 \))

无阻尼二阶系统的特征根是一对纯共轭虚数，其实质与欠阻尼系统类似，将欠阻尼二阶系统的单位阶跃响应表达式 (3-28) 中的 \(\zeta \) 用零替代，即可得到无阻尼状态下的单位阶跃响应：

\[
c(t) = 1 - \sin(\omega_0 t + 90°) = 1 - \cos(\omega_0 t)
\]

(3-32)

它以无阻尼自然振荡频率作等幅振荡。无阻尼二阶系统的响应曲线如图 3-10 所示，系统属不稳定系统。在工程控制系统中，或大或小总是存在黏滞阻尼效应的，即阻尼比不可能完全等于零。因此，振荡频率总是小于无阻尼自然振荡频率，振幅总是衰减的。

3.3.3 二阶系统的瞬态响应指标

由上面分析可知，对不同的阻尼比，二阶系统的单位阶跃响应有很大区别。当阻尼比 \(\zeta = 0 \) 时，系统不能正常工作；当 \(\zeta \geq 1 \) 时，系统输出的过渡过程虽没有超调，但响应过程往往很慢，快速性较差；欠阻尼 \(0 < \zeta < 1 \) 的情况在实际控制工程中是最有实际意义和代表性的。下面分析欠阻尼情况下控制系统动态响应指标的计算。

1. 上升时间 \(t_r \)

根据式 (3-28) 及上升时间的定义，当 \(t = t_r \) 时，

\[
c(t_r) = 1 - \frac{e^{-\zeta \omega_0 t_r}}{\sqrt{1 - \zeta^2}} \sin(\omega_0 t_r + \varphi) = 1
\]

则

\[
\frac{e^{-\zeta \omega_0 t_r}}{\sqrt{1 - \zeta^2}} \sin(\omega_0 t_r + \varphi) = 0
\]

由于在 \(t < \infty \) 期间，

\[
\frac{e^{-\zeta \omega_0 t_r}}{\sqrt{1 - \zeta^2}} > 0
\]

所以只能是 \(\sin(\omega_0 t_r + \varphi) = 0 \)。由此可得

\[
\omega_0 t_r + \varphi = \pi
\]
式中，\(\varphi = \tan^{-1} \left(\frac{\sqrt{1 - \zeta^2}}{\zeta} \right) \)。

2. 峰值时间 \(t_p \)

对式（3-28）两端取导数并令其等于零，可求得峰值时间
\[
\tan(\omega_d t_p + \varphi) = \frac{\sqrt{1 - \zeta^2}}{\zeta}
\]
由于 \(\frac{\sqrt{1 - \zeta^2}}{\zeta} = \tan \varphi \)，因此 \(\omega_d t_p = 0, \pi, 2\pi, \ldots \)
因为峰值时间 \(t_p \) 一般是对应于出现第一个峰值的时间，所以 \(\omega_d t_p = \pi \)，则
\[
t_p = \frac{\pi}{\omega_d} = \frac{\pi}{\omega_b \sqrt{1 - \zeta^2}} \tag{3-34}
\]

3. 超调量 \(\sigma \% \)

将峰值时间的表达式（3-34）代入式（3-28），得到输出量的最大值（若振荡收敛）
\[
c(t_p) = 1 - e^{-\frac{\sigma}{\sqrt{1 - \zeta^2}}} \sin(\pi + \varphi)
\]
因为 \(\sin(\pi + \varphi) = -\sin \varphi = -\sqrt{1 - \zeta^2} \)，所以
\[
c(t_p) = 1 + e^{-\frac{\sigma}{\sqrt{1 - \zeta^2}}}
\]
根据超调量的定义，可得
\[
\sigma \% = \frac{c(t_p) - c(\infty)}{c(\infty)} \times 100\%
\]
在单位阶跃输入下，稳态值 \(c(\infty) = 1 \)。因此得到最大超调量为
\[
\sigma \% = e^{-\frac{\sigma}{\sqrt{1 - \zeta^2}}} \times 100\% \tag{3-35}
\]

4. 调节时间 \(t_e \)

调节时间 \(t_e \) 是 \(c(t) \) 与稳态值 \(c(\infty) \) 之间的偏差达到允许范围（称为 \(\pm 5\% \) 误差带或 \(\pm 2\% \) 误差带），且不再超过此范围的过渡过程时间。即
\[
\Delta c = c(\infty) - c(t) = e^{-\frac{\sigma}{\sqrt{1 - \zeta^2}}} \sin(\omega_b \sqrt{1 - \zeta^2} t + \varphi) \leq 0.05 \text{ 或 } 0.02
\]
由于正弦函数存在，因此求解精确的调节时间 \(t_e \) 很困难。为简单起见，常采用近似的计算方法。不考虑正弦函数，认为指数项衰减到 0.05 或 0.02 时，过渡过程进行完毕，即
第3章 控制系统的时域分析法

\[
\frac{e^{-\zeta \omega_h}}{\sqrt{1-\zeta^2}} = 0.05 \text{（或 0.02）}
\]

由此求得调节时间

\[
t_s(5\%) = \frac{1}{\zeta \omega_h} \left[3 - \frac{1}{2} \ln (1 - \zeta^2) \right] \approx \frac{3}{\zeta \omega_h} \tag{3-36}
\]

\[
t_s(2\%) = \frac{1}{\zeta \omega_h} \left[4 - \frac{1}{2} \ln (1 - \zeta^2) \right] \approx \frac{4}{\zeta \omega_h} \tag{3-37}
\]

【例 3-3】已知二阶系统的闭环传递函数为 \(\Phi(s) = \frac{K}{s^2 + 2\zeta \omega_h s + \omega_h^2} \)，其中 \(\zeta = 0.6 \)，\(\omega_h = 5s^{-1} \)。

当有一单位阶跃信号作用于系统时，求其性能指标 \(t_p \)、\(t_s \) 和 \(\sigma\% \)。

【解】(1) 求 \(t_p \)。根据式 (3-34) 可得

\[
t_p = \frac{\pi}{\omega_h} = \frac{\pi}{\omega_h \sqrt{1-\zeta^2}} = 0.785s
\]

（2）求 \(t_s \)。根据式 (3-36) 或 (3-37) 得

\[
t_s(5\%) \approx \frac{3}{\zeta \omega_h} = 1s
\]

\[
t_s(2\%) \approx \frac{4}{\zeta \omega_h} = 1.33s
\]

（3）求 \(\sigma\% \)。根据式 (3-35) 可得

\[
\sigma\% = e^{-\frac{\zeta \omega_h}{\sqrt{1-\zeta^2}}} \times 100\% = 9.5\%
\]

【例 3-4】开环传递函数 \(G(s) = \frac{K}{s(Ts+1)} \) 的单位负反馈随动系统结构图如图 3-12 所示。设 \(K = 16 \)，\(T = 0.205s \)。试求：（1）典型二阶系统的特征参数 \(\zeta \) 和 \(\omega_h \)。（2）瞬态特性指标 \(\sigma\% \) 和 \(t_s \)。（3）欲使 \(\sigma\% = 16\% \)，\(K \) 应取何值。

![图 3-12 例 3-4 动态结构图]

【解】（1）求 \(\zeta \) 和 \(\omega_h \)。闭环系统的传递函数为

\[
\Phi(s) = \frac{K}{T^2s + s + K} = \frac{K}{\frac{s}{T} + \frac{K}{T}}
\]

由 \(\Phi(s) = \frac{\omega_h^2}{s^2 + 2\zeta \omega_h s + \omega_h^2} \)，比较上下两式，则有

\[
\omega_h = \sqrt{\frac{K}{T}}, \quad \zeta = \frac{1}{2\sqrt{KT}}
\]

将已知 \(K \)、\(T \) 值代入可得
自动控制原理

\[\omega_n = \sqrt{\frac{K}{T}} = \sqrt{\frac{16}{0.25}} = 8 \text{s}^{-1}, \quad \zeta = \frac{1}{2\sqrt{KT}} = 0.25 \]

(2) 求 \(\sigma \% \) 和 \(t_s \)。根据式 (3-35) 得

\[\sigma\% = e^{-\frac{\zeta}{\sqrt{1 - \zeta^2}}} \times 100\% = e^{-\frac{0.25\times0.707}{\sqrt{1-0.25^2}}} \times 100\% = 44.43\% \]

根据式 (3-36) 或式 (3-37) 得

\[t_s(5\%) = \frac{3}{\zeta\omega_n} = \frac{3}{0.25 \times 8} = 1.5 \text{s} \]

\[t_s(2\%) = \frac{4}{\zeta\omega_n} = \frac{4}{0.25 \times 8} = 2.0 \text{s} \]

(3) 欲使 \(\sigma\% = 16\% \)，求 \(K \) 值。

将超调量代入式 (3-35) 求得 \(\zeta = 0.5 \)，即应使 \(\zeta \) 由 0.25 增大到 0.5，此时 \(K \) 值应减小 4 倍。

【例 3-5】为了改善如图 3-12 所示系统的瞬态响应指标，满足单位阶跃输入下系统的超调量 \(\sigma\% \leq 5\% \) 的要求，令其加入微分负反馈环节 \(rs \) 得如图 3-13 所示的动态系统结构图。求微分环节时间常数 \(\tau \)。

【解】系统的开环传递函数为

\[G(s) = \frac{4}{s(s + 1 + 4\tau)} = \frac{4}{1 + 4\tau} \times \frac{1}{s\left(s + \frac{1}{1 + 4\tau} + 1\right)} \]

由上式可以看出，等效于控制对象的时间常数减小为 \(\frac{1}{1 + 4\tau} \)，开环放大系数由 4 降低为 \(\frac{4}{1 + 4\tau} \)。系统的闭环传递函数为

\[\Phi(s) = \frac{4}{s^2 + (1 + 4\tau)s + 4} \]

则 \(2\zeta\omega_n = (1 + 4\tau) \), \(\omega_n^2 = 4 \)，且为了使 \(\sigma\% \leq 5\% \)，令 \(\zeta = 0.707(0 < \zeta < 1) \)，可求得

\[\tau = \frac{2\zeta\omega_n - 1}{4} = 0.457 \]

由此求得开环放大系数为

\[K = \frac{4}{1 + 4\tau} = 1.414 \]

可以看出，当系统加入局部微分负反馈时，相当于增加系统的阻尼比，提高了系统的稳定性，但同时也降低了系统的开环放大系数。
3.3.4 高阶系统的瞬态响应

实际工程的大部分控制系统都是由高阶微分方程描述的系统，这种由高阶微分方程描述的系统叫做高阶系统。高阶系统的传递函数一般可写成如下形式:

\[
C(s) = \frac{b_n s^n + b_{n-1}s^{n-1} + \cdots + b_1s + b_0}{a_m s^m + a_{m-1}s^{m-1} + \cdots + a_1s + a_0}, \quad n \geq m
\] (3-38)

将上式进行因式分解，可写成:

\[
C(s) = \frac{K(s + z_i)(s + z_2)\cdots(s + z_m)}{(s + p_1)(s + p_2)\cdots(s + p_n)}, \quad n \geq m
\] (3-39)

式中，\(-p_i\) 为传递函数的极点，\(i = 1, 2, \ldots, n\); \(-z_j\) 为传递函数的零点，\(j = 1, 2, \ldots, m\)。

假定系统所有零点、极点互不相同，并假设极点中有实数极点和复数极点，而零点中只有实数零点，则当输入为单位阶跃函数时，其阶跃响应的象函数为

\[
C(s) = \frac{K \prod_{j=1}^{m}(s + z_j)}{s \prod_{i=1}^{q}(s + p_i) \prod_{k=1}^{r}(s^2 + 2\zeta_k \omega_k s + \omega_k^2)}
\] (3-40)

式中，\(n = q + 2r\)，\(q\) 为实数极点的个数，\(r\) 为复数极点的对数。

将式（3-40）用部分分式展开，则有

\[
C(s) = \frac{A_0}{s} + \sum_{i=1}^{q} \frac{A_i}{s + p_i} + \sum_{k=1}^{r} \frac{B_k (s + \zeta_k \omega_k)}{s^2 + 2\zeta_k \omega_k s + \omega_k^2}
\]

对上式求拉普拉斯反变换，可得

\[
c(t) = A_0 + \sum_{i=1}^{q} A_i e^{-pt} + \sum_{k=1}^{r} \left[B_k e^{-\zeta_k \omega_k t} \cos (\omega_k \sqrt{1 - \zeta_k^2} t) \right] + \sum_{k=1}^{r} \left[C_k e^{-\zeta_k \omega_k t} \sin (\omega_k \sqrt{1 - \zeta_k^2} t) \right]
\] (3-41)

式中，\(A_0, A_i, B_k, C_k\) 均为实数，其中\(A_0 = K\)，显然，高阶系统瞬态响应是一阶系统和二阶系统瞬态响应的合成; \(\zeta_k, \omega_k\) 分别为相应的第 \(k\) 个二阶振荡环节的阻尼比和无阻尼自然振荡频率。从式（3-41）可知，高阶系统的瞬态响应各分量的衰减快慢由指数衰减系数 \(p_i\) 和 \(\zeta_k \omega_k\) 所决定。

3.4 控制系统的稳定性分析

设计控制系统时，应满足多种性能指标，但首先必须稳定，所以判断系统稳定性和使系统处于稳定工作状态是自动控制理论的基本问题之一。

3.4.1 稳定性基本概念

控制系统在实际工作过程中，总会受到各种各样的扰动，如果系统收到扰动后，偏离了平衡状态，但当扰动消失后，系统仍能逐渐恢复到原平衡状态，则称系统是稳定的; 如果系统不能恢复或越来越偏离原平衡位置，则称系统是不稳定的。稳定性是扰动消失后系统自身的一种恢复能力，是系统的一种固有特性。如图 3-14 所示，对线性系统而言，这种固有的稳定性只取决于系统的结构和参数，与系统的输入及初始状态无关。
线性系统稳定性定义为：若线性系统在初始扰动的影响下，其动态过程随时间推移逐渐衰减并趋于零，则称系统渐近稳定，简称稳定；反之，若在初始扰动的影响下，其动态过程随时间推移而发散，则称系统不稳定。

3.4.2 线性系统稳定的充要条件

基于稳定性研究的是扰动作用消失后系统的运动情况，它与系统的输入信号无关，只取决于系统本身的特性，因而可用系统的单位脉冲响应函数来描述。若单位脉冲响应函数是收敛的，则

$$\lim_{t \to \infty} c(t) = 0$$

表示系统仍能回到原有的平衡状态，因而系统是稳定的。由此可见，系统稳定性与单位脉冲响应函数的收敛性一致。

因为单位脉冲函数的拉普拉斯变换等于 1，所以系统的脉冲响应函数就是系统闭环传递函数的拉普拉斯反变换。令系统的闭环传递函数含有 q 个实数极点和 r 对复数极点，则式(3-40)可以改写为

$$C(s) = \frac{K \prod_{j=1}^{m} (s + z_j)}{\prod_{i=1}^{n} (s + p_i) \prod_{k=1}^{r} \left(s^2 + 2 \zeta_k \omega_n s + \omega_n^2 \right)}$$

式中，$n = q + 2r$，q 为实数极点的个数，r 为复数极点的对数。式(3-42)用部分分式展开，则

$$C(s) = \sum_{i=1}^{q} \frac{A_i}{s + p_i} + \sum_{k=1}^{r} \frac{B_k (s + \zeta_k \omega_n)}{s^2 + 2 \zeta_k \omega_n s + \omega_n^2}$$

对上式进行拉普拉斯反变换，求得系统的脉冲响应函数，则

$$c(t) = \sum_{i=1}^{q} A_i e^{-p_i t} \sum_{k=1}^{r} B_k e^{-\zeta_k \omega_n t} \cos \left(\omega_n \sqrt{1 - \zeta_k^2} t \right) + \sum_{k=1}^{r} C_k e^{-\zeta_k \omega_n t} \sin \left(\omega_n \sqrt{1 - \zeta_k^2} t \right)$$

由式(3-44)可知，当满足 $\lim_{t \to \infty} c(t) = 0$ 时，其相应的特征方程式的每一个特征根不论是实数根还是复数根，都具有负实部，即根都位于复平面上的左半平面，这就是系统稳定性的充分必要条件。

只要系统的特征根中有一个正实根或一对实部为正的复数根，则其脉冲响应函数就呈发散形式，系统不会回到原有的平衡状态，这样的系统就是不稳定系统。如图3-15所示为系统可能的特征根的分布情况。如果特征方程在复平面的右半平面上没有根，但在虚轴上有根，那么说明该系统是临界稳定的，系统将出现等幅振荡。
第 3 章 控制系统的时域分析法

图 3-15 系统可能的特征根分布

【注意】

① 控制系统稳定性指的是原处于平衡状态的系统，受到扰动偏离了平衡状态，扰动消失后，系统能恢复到原平衡状态的能力。

② 控制系统稳定与否，完全决定于它本身的结构和参数，取决于系统特征方程式根的实部正负，与系统的初始条件和输入信号无关。

3.4.3 劳斯稳定性判据

判断系统稳定性最基本的方法是根据特征方程式根的性质来判断，但求解高于三阶的特征方程式相当困难。在实际应用中产生了各种工程方法，它们无需求解特征方程，只要知道特征根在复平面上的分布情况，就可判断系统的稳定性。

劳斯判据就是其中一种普遍采用的方法，有关劳斯判据自身的证明这里不再赘述，仅仅介绍该判据有关的结论及其在判断控制系统稳定性方面的应用。该判据的具体内容及应用步骤如下：

（1）列出控制系统特征方程式。

\[a_0 s^n + a_1 s^{n-1} + a_2 s^{n-2} + \cdots + a_{n-1} s + a_n = 0 \] \hspace{1cm} (3-45)

式中，各项系数均为实数，且使 \(a_0 > 0 \)。

（2）列出劳斯表。

<table>
<thead>
<tr>
<th>(s^n)</th>
<th>(a_0)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s^{n-1})</td>
<td>(b_1)</td>
<td>(b_2)</td>
<td>(b_3)</td>
<td>(b_4)</td>
<td>(b_5)</td>
<td>(b_6)</td>
</tr>
<tr>
<td>(s^{n-2})</td>
<td>(c_1)</td>
<td>(c_2)</td>
<td>(c_3)</td>
<td>(c_4)</td>
<td>(c_5)</td>
<td>(c_6)</td>
</tr>
<tr>
<td>(\vdots)</td>
</tr>
<tr>
<td>(s^2)</td>
<td>(e_1)</td>
<td>(e_2)</td>
<td>(e_3)</td>
<td>(e_4)</td>
<td>(e_5)</td>
<td>(e_6)</td>
</tr>
<tr>
<td>(s^1)</td>
<td>(f_1)</td>
<td>(f_2)</td>
<td>(f_3)</td>
<td>(f_4)</td>
<td>(f_5)</td>
<td>(f_6)</td>
</tr>
<tr>
<td>(s^0)</td>
<td>(g_1)</td>
<td>(g_2)</td>
<td>(g_3)</td>
<td>(g_4)</td>
<td>(g_5)</td>
<td>(g_6)</td>
</tr>
</tbody>
</table>

表中各未知元素由计算得出，其中：

\[b_1 = \frac{a_1 a_2 - a_0 a_3}{a_1}, \quad b_2 = \frac{a_1 a_3 - a_0 a_4}{a_1}, \quad b_3 = \frac{a_1 a_6 - a_0 a_7}{a_1}, \quad \cdots \]

\[c_1 = \frac{b_1 a_3 - a_1 b_2}{b_1}, \quad c_2 = \frac{b_1 a_4 - a_1 b_3}{b_1}, \quad c_3 = \frac{b_1 a_7 - a_1 b_4}{b_1}, \quad \cdots \]
自动控制原理

同样的，求取表中其余行的系数，一直到第 \(n + 1 \) 行排完为止。
（3）根据劳斯表中第一列各元素的符号，用劳斯判据来判断系统的稳定性。内容如下：
① 若劳斯表中第一列的系数均为正，则其特征方程的根都在 \(S \) 的左半平面，相应的系统是稳定的。
② 若劳斯表中的第一列系数的符号发生变化，则系统不稳定，且第一列元素正、负号的改变次数等于特征方程的根在 \(S \) 右半平面的个数。
【例 3-6】 设系统的特征方程式如下：
\[s^4 + 2s^3 + 3s^2 + 4s + 5 = 0 \]
试用劳斯判据判断系统的稳定性。
【解】 劳斯表如下：

\(s^4 \)	1	3	5
\(s^3 \)	2	4	
\(s^2 \)	\(\frac{2 \times 3 - 1 \times 4}{2} = 1 \)	\(\frac{2 \times 5 - 1 \times 0}{2} = 5 \)	
\(s^1 \)	\(\frac{1 \times 4 - 2 \times 5}{1} = -6 \)		
\(s^0 \)	\(\frac{-6 \times 5}{-6} = 5 \)		

劳斯表左端第一列中出现负数，因此系统不稳定；又由于第一列数的符号改变了两次，
1 \(\rightarrow \) -6 \(\rightarrow \) 5，所以系统有两个根在 \(S \) 平面的右半平面。
在劳斯表的计算中，可能会出现两种特殊情况：
① 劳斯表中某一行左边第一个数为零，但其余各项不为零。
在这种情况下，可以用一个很小的正数 \(\epsilon \) 代替这个零，并据此计算出数组中其余各项。如果劳斯表第一列中各项的符号都为正，则说明系统处于稳定状态；如果第一列中各项的符号不同，
表明有符号变化，则系统不稳定。见例 3-7。
② 若劳斯表中某一行中的所有元素都为零，则表明系统存在两个大小相等、符号相反的实根和（或）共轭复根。
利用全零行上面一行的系数构成一个辅助方程式，并将对辅助方程式求导后得到的系数列替换该行，这样，数组中其余各行的计算可进行下去。 \(S \) 平面中这些大小相等、方向相反的根可以通过辅助方程式得到，而且这些根的个数总是偶数。见例 3-8。
【例 3-7】 控制系统特征方程为 \(s^4 + 2s^3 + s^2 + 2s + 1 = 0 \)，试用劳斯判据判断系统的稳定性。
【解】 特征方程式各项系数均为正数，劳斯表如下：

\(s^4 \)	1	1
\(s^3 \)	2	
\(s^2 \)	0(\(\epsilon \))	
\(s^1 \)	\(2 - \frac{2}{\epsilon} \)	
\(s^0 \)	1	

由于 \(\epsilon \) 是很小的数， \(s^1 \) 行就是一个绝对值很大的负数。所以整个劳斯表中第一列元素符号共改变两次，系统有两个位于 \(S \) 右半平面的根。
3. 控制系统的时域分析法

【例 3-8】系统特征方程式为 \(s^5 + s^4 + 3s^3 + 3s^2 + 2s + 2 = 0 \)，试用劳斯判据判断系统的稳定性。

【解】该控制系统劳斯表如下：

\(s^5 \)	1	3	2
\(s^4 \)	1	3	2
\(s^3 \)	0	0	

由此表可以看出，\(s^3 \) 行各项系数全部为零。为了求出 \(s^3 \) 行及以下各行的元素，将 \(s^3 \) 行上面的 \(s^4 \) 行组成辅助方程式为

\[
A(s) = s^4 + 3s^2 + 2s^6
\]

并将辅助方程式 \(A(s) \) 对 \(s \) 求导，可得

\[
\frac{dA(s)}{ds} = 4s^3 + 6s
\]

用上式中的各项系数替换 \(s^3 \) 行的系数，并计算以下各行的系数，可得劳斯表：

\(s^5 \)	1	3	2
\(s^4 \)	1	3	2
\(s^3 \)	4	6	
\(s^2 \)	\(\frac{1}{2} \)	2	
\(s^1 \)	\(\frac{2}{3} \)		
\(s^0 \)	2		

上表第一列可以看出，各行系数符号没有改变，说明系统没有特征根在 \(S \) 的右半平面。由辅助方程式可解得系统有两对共轭虚根 \(s_{1,2} = \pm j \), \(s_{3,4} = \pm \sqrt{2} j \)，因而系统处于临界稳定状态。

3.4.4 MATLAB 稳定性判断方法

依据前节可知，求解线性控制系统稳定性问题的方法之一是求出该系统所有的特征根一极点，并观察是否有实部为正的根，如果有实正的极点，则系统不稳定，反之系统稳定；若稳定系统中存在实部为零的极点，这样的系统称为临界稳定系统。下面举例采用 MATLAB 计算特征根的方法来判断系统稳定性。

【例 3-9】已知系统的闭环传递函数为

\[
\frac{C(s)}{R(s)} = \frac{s^3 + 7s^2 + 24s + 24}{s^4 + 10s^3 + 35s^2 + 50s + 24}
\]

试判断系统的稳定性。

【MATLAB 实现】

```matlab
num=[1,7,24,24]; den=[1,10,35,50,24];
G=tf(num,den);
roots(G.den{1}) %求特征方程式的根。其中{}表示维数
ans =
   -4.0000
   -3.0000
```
或者

```matlab
num=[1,7,24,24];den=[1,10,35,50,24];
G=tf(num,den);
G1=zpk(G);  %零极点模型
G1.p{1}     %求特征方程式的根。其中()表示维数
ans =
   -4.0000
   -3.0000
   -2.0000
  -1.0000
```

3.5 稳态误差分析及计算

对于线性稳定系统，稳态误差是衡量系统稳态响应的重要时域指标，是系统控制精度及抑制干扰能力的度量。它根据系统对某些典型输入信号作用下的稳态误差值或误差系数来评价其性能的优劣。控制系统设计的主要任务之一，就是使稳态误差尽量小或控制在一个允许的范围内。

3.5.1 误差及稳态误差的定义

1. 误差

典型控制系统结构图如图3-16所示，由此，对误差有两种定义方法。一种是从系统输入端定义的误差，用 $e(t)$ 表示。它等于系统的输入信号与主反馈信号之差，即

$$e(t) = r(t) - b(t)$$ \hspace{1cm} (3-46)

相应的拉普拉斯变换式为

$$E(s) = R(s) - B(s)$$ \hspace{1cm} (3-47)

这种方式定义的误差，在实际控制系统中是可以测量的。另一种是从系统输出端定义的，用 $e(t)$ 表示。它等于系统输出量的期望值 $c^*(t)$ 与实际值 $c(t)$ 之差。即
第3章 控制系统的时域分析法

相应的拉普拉斯变换为
\[\varepsilon(s) = C^*(s) - C(s) \] (3-49)

有时这种定义的误差又称为偏差，其概念清晰，但实际控制系统中是无法测量的。

两种定义的误差间有何关系呢？对于单位负反馈系统（见图3-16，\(H(s) = 1 \)），由于实际输出信号\(c(t) \)与反馈信号\(b(t) \)相同，而输出量的期望值就是输入量，因此两种误差的定义是相同的。

对于非单位负反馈，即如图3-16中的\(H(s) \neq 1 \)的系统，把它变换成等效的单位负反馈系统，如图 3-17 所示。图中\(C^*(s) \)表示等效单位负反馈系统的输入量，也就是系统输出量\(C(s) \)的期望值。

由输出端误差定义:
\[\varepsilon(s) = C^*(s) - C(s) = \frac{1}{H(s)} \left[R(s) - B(s) \right] = \frac{1}{H(s)} E(s) \] (3-50)

上式表明，对于非单位负反馈，输出端定义的误差等于反馈环节传递函数的倒数乘以输入端定义的误差。

以下讨论均采用输入端定义的误差，若有必要涉及系统输出端定义的误差分析或计算，可参考式 (3-50)作简单的换算。

2. 稳态误差

对于稳定的控制系统，其误差的终值称为稳态误差，记作\(e_n \)，表示为
\[e_n = \lim_{t \to \infty} \varepsilon(t) \] (3-51)

3.5.2 给定输入作用下的稳态误差计算

1. 采用终值定理

如图3-16所示，考虑输入信号\(R(s) \)引起的误差时，令\(N(s) = 0 \)，即不考虑扰动作用。误差传递函数为
\[\Phi_{ER}(s) = \frac{E(s)}{R(s)} = \frac{1}{1 + G_1(s)G_2(s)H(s)} = \frac{1}{1 + G_k(s)} \] (3-52)

式中，\(G_k(s) = G_1(s)G_2(s)H(s) \)为控制系统的开环传递函数。由式 (3-52)，误差拉普拉斯变换式为
\[E(s) = \Phi(s)R(s) = \frac{R(s)}{1 + G_k(s)} \] (3-53)
自动控制原理

对于稳定的控制系统，可以利用拉普拉斯变换的终值定理计算稳态误差，即

$$e_s = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{sR(s)}{1 + G_K(s)}$$

(3-54)

【例 3-10】如图 3-18 所示的系统动态结构图。试求给定输入为单位阶跃信号时的稳态误差。若在前向通路串联一积分环节，求相同输入作用下的稳态误差。

图 3-18 例 3-10 动态结构图

【解】 系统的稳态误差传递函数为

$$\Phi_{ER}(s) = \frac{E(s)}{R(s)} = \frac{1}{1 + G_K(s)}$$

则有

$$E(s) = \Phi_{ER}(s)R(s) = \frac{R(s)}{1 + G_K(s)} = \frac{s^2 + s + 1}{s^2 + s + 1 + K} \times \frac{1}{s}$$

假设控制系统是稳定的，应用终值定理，则有

$$e_s = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \times \frac{s^2 + s + 1}{s^2 + s + 1 + K} \times \frac{1}{s} = \frac{1}{1 + K}$$

式中，K 是开环传递函数的增益。

若在前向通路中串联一积分环节，则系统开环传递函数为

$$G_K(s) = \frac{K}{s(s^2 + s + 1)}$$

假设系统仍是稳定时，应用终值定理，稳态误差为

$$e_s = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \times \frac{s(s^2 + s + 1)}{s^3 + s^2 + s + K} \times \frac{1}{s} = 0$$

可见，前向通路串联积分环节后，稳态误差变为零。

【注意】

对于不稳定的系统，由于系统没有稳态过程，因此也就没有稳态误差，当然也不能应用终值定理。

2. 静态误差系数法

系统分析中经常需要计算控制系统输入作用下稳态误差。因此，分析典型输入作用下系统稳态误差与结构参数及输入形式之间的关系，找出其中的规律，对控制系统的研究是十分必要的。

由式（3-53）看出，稳态误差与系统开环传递函数 $G_K(s)$ 和输入信号 $R(s)$ 的形式有关。设系统开环传递函数表达式改写为:
第 3 章 控制系统的时域分析法

式中，K：系统开环放大系数或称开环增益；
$
u$：开环传递函数中积分环节的个数，通常称之为系统的无差度阶数，并将系统按无差度阶数进行分类。分别称$
u = 0, 1, 2, \cdots$的系统为$0$型、$I$型、$II$型......系统。实际系统中，$
u$一般不超过$2$，否则系统很难稳定。

下面讨论不同输入作用下，稳态误差与系统结构、参数之间的关系。

1）阶跃函数输入
当输入信号为阶跃函数时，$r(t) = A \cdot 1(t)$，$R(s) = \frac{A}{s}$。由式（3-54）可知

$$e_{ss} = \lim_{s \to 0} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{1}{1 + G_K(s)} \cdot \frac{A}{s} = \frac{A}{1 + \lim_{s \to 0} G_K(s)}$$ (3-56)

A 为输入信号的幅值，当单位阶跃函数输入时，$A = 1$。
令$k_p = \lim_{s \to 0} G_K(s)$，并称$k_p$为静态位置误差系数，则有

$$e_{ss} = \frac{A}{1 + k_p}$$ (3-57)

对于0型系统（$\nu = 0$），静态位置误差系数为

$$k_p = \lim_{s \to 0} G_K(s) = \lim_{s \to 0} \frac{K(T_1, T_2, \cdots, T_n)}{s(T_1, T_2, \cdots, T_n)} = K$$

因此，阶跃函数输入时，对于0型系统的稳态误差为

$$e_{ss} = \frac{A}{1 + k_p} = \frac{A}{1 + \infty} = 0$$ (3-58)

对于I型系统（$\nu = 1$），静态位置误差系数为

$$k_p = \lim_{s \to 0} G_K(s) = \lim_{s \to 0} \frac{K(T_1, T_2, \cdots, T_n)}{s(T_1, T_2, \cdots, T_n)} = \infty$$

因此，阶跃函数输入时，对于I型系统的稳态误差为

$$e_{ss} = \frac{A}{1 + k_p} = \frac{A}{1 + \infty} = 0$$ (3-59)

对于II型系统（$\nu = 2$），静态位置误差系数为

$$k_p = \lim_{s \to 0} G_K(s) = \lim_{s \to 0} \frac{K(T_1, T_2, \cdots, T_n)}{s^2(T_1, T_2, \cdots, T_n)} = \infty$$

因此，阶跃函数输入时，对于II型系统的稳态误差为

$$e_{ss} = \frac{A}{1 + k_p} = \frac{A}{1 + \infty} = 0$$ (3-60)

2）斜坡函数输入
当输入信号为斜坡函数时，$r(t) = A \cdot t$，$R(s) = \frac{A}{s^2}$。由式（3-54）知
\[
e_{ss} = \lim_{s \to \infty} e(t) = \lim_{s \to \infty} sE(s) = \lim_{s \to \infty} s \cdot \frac{A}{1 + G_K(s)} = \frac{A}{\lim_{s \to \infty} sG_K(s)}
\]

(3-61)

\(A\) 为输入信号的幅值，当单位斜坡函数输入时，\(A = 1\)。
令 \(k_v = \lim_{s \to \infty} sG_K(s)\)，并称 \(k_v\) 为静态速度误差系数。则有
\[
e_{ss} = \frac{A}{k_v}
\]

(3-62)

将各型系统的开环传递函数式（3-55）代入式（3-62），求得各型系统在斜坡函数输入时的静态速度误差系数 \(k_v\) 和静态误差 \(e_{ss}\)。
对于 0 型系统，\(k_v = 0\)，\(e_{ss} = \infty\)。
对于 I 型系统，\(k_v = K\)，\(e_{ss} = \frac{A}{K}\)。
对于 II 型系统，\(k_v = \infty\)，\(e_{ss} = 0\)。

3）加速度函数输入

当输入信号为加速度函数时，\(r(t) = \frac{A \cdot t^2}{2}\)，\(R(s) = \frac{A}{s^3}\)。由式（3-54）知
\[
e_{sa} = \lim_{s \to \infty} e(t) = \lim_{s \to \infty} sE(s) = \lim_{s \to \infty} s \cdot \frac{1}{1 + G_K(s)} = \frac{A}{\lim_{s \to \infty} s^2G_K(s)}
\]

(3-63)

\(A\) 为输入信号的幅值，当单位加速度函数输入时，\(A = 1\)。
令 \(k_a = \lim_{s \to \infty} s^2G_K(s)\)，并称 \(k_a\) 为静态加速度误差系数。则
\[
e_{sa} = \frac{A}{k_a}
\]

(3-64)

将各型系统的开环传递函数式（3-55）代入式（3-64），求得各型系统在加速度函数输入时的静态速度误差系数 \(k_a\) 和静态误差 \(e_{sa}\)。
对于 0 型系统，\(k_a = 0\)，\(e_{sa} = \infty\)。
对于 I 型系统，\(k_a = 0\)，\(e_{sa} = \infty\)。
对于 II 型系统，\(k_a = K\)，\(e_{sa} = \frac{A}{K}\)。

各型系统在不同输入情况下的误差系数及稳态误差汇总列表于表 3-2 所示。

表 3-2 不同输入信号作用下的静态误差

<table>
<thead>
<tr>
<th>系统类型</th>
<th>误差系数</th>
<th>典型信号输入下的稳态误差</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(k_p)</td>
<td>(k_v)</td>
</tr>
<tr>
<td>0 型</td>
<td>(K)</td>
<td>0</td>
</tr>
<tr>
<td>I 型</td>
<td>(\infty)</td>
<td>(K)</td>
</tr>
<tr>
<td>II 型</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
</tbody>
</table>
第3章 控制系统的时域分析法

4）典型信号合成输入
当系统的输入由阶跃、斜坡和加速度信号合成时，即
\[r(t) = A + Bt + \frac{1}{2}Ct^2, \quad R(s) = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s^3} \]
式中，A、B、C 分别为阶跃、速度和加速度输入信号的幅值。

对这样的合成输入，除了可通过终值定理求出稳态误差外，还可以采用叠加原理，分别求出系统对阶跃、斜坡和加速度输入下的稳态误差，然后再将所求得的结果叠加。

【例3-11】控制系统的动态结构图如图3-19所示，已知输入信号 \(r(t) = 1(t) + t + \frac{1}{2}t^2 \)，试求系统的稳态误差。

图3-19 例3-11动态结构图

【解】（1）判断稳定性。图3-19系统的闭环传递函数的特征方程为
\[s^2(T_m s + 1) + K_t K_m (s + 1) = 0 \]
\[T_m s^3 + s^2 + K_t K_m s + K_t K_m = 0 \]
由此，得系统稳定的条件：
① \(T_m, K_t, K_m \) 和 \(\tau \) 均大于零。
② 由劳斯表可知，第一列元素应大于零，即
\[K_t K_m \tau - K_t K_m T_m > 0 \]
则系统稳定条件是
\[\tau > T_m \]

（2）求稳态误差。根据系统结构与稳态误差之间的关系，由于系统的开环传递函数中有两个积分环节，故属于II型系统。由表3-2可得
当 \(n(t) = 1(t) \) 输入时，\(e_{st1} = 0 \)
当 \(n_2(t) = t \) 输入时，\(e_{st2} = 0 \)
当 \(n_3(t) = \frac{1}{2}t^2 \) 输入时，\(e_{st3} = \frac{1}{2} \)

因此，系统总的稳态误差为
\[e_{st} = e_{st1} + e_{st2} + e_{st3} = \frac{1}{K_t K_m} \]

3.5.3 扰动作用下的稳态误差计算

在实际控制系统中，除了给定输入作用，往往还会受到不希望的扰动作用。例如，建筑物给排水系统中水箱的水压波动、空调系统的室外新风流量和温度的脉动、供电系统中电源电压的波动等。

图3-16系统结构中，只考虑由扰动作用 \(N(s) \) 引起的稳态误差，令 \(r(t) = 0 \)，即 \(R(s) = 0 \)。此时，系统的误差传递函数为
误差的拉普拉斯变换式为

\[E(s) = \Phi_{en}(s)N(s) = \frac{G_2(s)H(s)}{1 + G_k(s)}N(s) \]

使用终值定理，计算稳定系统在扰动作用下的稳态误差 \(e_m \) 为

\[e_m = \lim_{s \to 0} sE(s) = -\lim_{s \to 0} \left[s \cdot \frac{G_2(s)H(s)}{1 + G_k(s)} N(s) \right] \]

(3-65)

3.5.4 给定输入、扰动共同作用下的稳态误差计算

实际控制系统中，给定输入和扰动作用往往同时存在，根据线性叠加原理，可以分别求出各自作用下的稳态误差，然后相加，即

\[e = e_a + e_m \]

(3-66)

由于作用在系统上的扰动方向会变化，因此，在实际控制系统设计中，常取它们的绝对值相加作为系统的稳态误差，即

\[e = |e_a| + |e_m| \]

(3-67)

【例 3-12】控制系统结构图如图 3-20 所示。已知 \(r(t) = n_1(t) = n_2(t) = 1(t) \)，试分别计算 \(r(t) \)、\(n_1(t) \)、\(n_2(t) \) 作用下的稳态误差及总稳态误差。

【解】（1）求分别作用下的稳态误差。

开环传递函数为

\[G_k(s) = \frac{K}{s(T_1s + 1)(T_2s + 1)} \]

系统属于 I 型（\(\nu = 1 \)），特征方程为

\[D(s) = T_1T_2s^3 + (T_1 + T_2)s^2 + s + K = 0 \]

设 \(T_1 > 0 \)，\(T_2 > 0 \)，\(K > 0 \)，保证系统稳定。

1. 给定输入下的稳态误差。

给定输入下的误差传递函数为

\[\Phi_{er}(s) = \frac{E(s)}{R(s)} = \frac{1}{1 + \frac{K}{s(T_1s + 1)(T_2s + 1)}} = \frac{s(T_1s + 1)(T_2s + 1)}{s(T_1s + 1)(T_2s + 1) + K} \]

所以
第 3 章 控制系统的时域分析法

\[e_{ss} = \lim_{s \to 0} s \Phi_{ER}(s) R(s) = \lim_{s \to 0} s \cdot \frac{s(T_s s + 1)(T_s s + 1)}{s(T_s s + 1)(T_s s + 1) + K} \cdot \frac{1}{s} = 0 \]

2. 在干扰信号 \(n_i(t) \) 作用下的稳态误差。
在干扰信号 \(n_i(t) \) 作用下的误差传递函数为

\[\Phi_{ER1}(s) = \frac{E(s)}{N_1(s)} = \frac{-1}{s(T_s s + 1)} \cdot \frac{K}{s(T_s s + 1)(T_s s + 1) + K} = \frac{-s(T_s s + 1)}{s(T_s s + 1)(T_s s + 1) + K} \]

所以

\[e_{n1} = \lim_{s \to 0} s \Phi_{ER1}(s) N_1(s) = \lim_{s \to 0} s \cdot \frac{-s(T_s s + 1)}{s(T_s s + 1)(T_s s + 1) + K} \cdot \frac{1}{s} = -\frac{1}{K} \]

3. 干扰 \(n_2(t) \) 作用下的稳态误差。
干扰 \(n_2(t) \) 作用下的误差传递函数为

\[\Phi_{ER2}(s) = \frac{E(s)}{N_2(s)} = \frac{-1}{s(T_s s + 1)} \cdot \frac{K}{s(T_s s + 1)(T_s s + 1) + K} = \frac{-s(T_s s + 1)}{s(T_s s + 1)(T_s s + 1) + K} \]

所以

\[e_{n2} = \lim_{s \to 0} s \Phi_{ER2}(s) N_2(s) = \lim_{s \to 0} s \cdot \frac{-s(T_s s + 1)}{s(T_s s + 1)(T_s s + 1) + K} \cdot \frac{1}{s} = 0 \]

(2) 总稳态误差。根据叠加原理，可得

\[e = e_{n1} + e_{n1} + e_{n2} = 0 - \frac{1}{K} + 0 = -\frac{1}{K} \]

【例 3-13】控制系统结构图如图 3-21 所示。要求：
(1) 当 \(a = 0 \) 时，确定系统的阻尼比 \(\zeta \) 、自然频率 \(\omega_n \) 和单位斜坡输入时系统的稳态误差 \(e_{ss} \)。
(2) 当 \(\zeta = 0.7 \) 时，确定参数 \(a \) 值及单位斜坡输入时系统的稳态误差 \(e_{ss} \)。
(3) 保证阻尼比 \(\zeta = 0.7 \) 和稳态误差 \(e_{ss} = 0.25 \) 条件下，确定参数 \(a \) 和前向通路增益 \(K \)。

图 3-21 控制系统结构图

【解】 (1) 当 \(a = 0 \) 时，根据图 3-21 可得系统开环传递函数为

\[G_k(s) = \frac{8}{s(s + 2)} = \frac{\omega_n^2}{s(s + 2 \zeta \omega_n)} \]

系统的自然频率与阻尼比为
\[\omega_n = 2\sqrt{2} = 2.83, \quad \zeta = \frac{\sqrt{2}}{4} = 0.35 \]

同时可知，系统属于Ⅰ型系统，且 \(k_v = \lim_{s \to 0} s G(s) = 4 \)，故在单位斜坡输入时系统的稳态误差为

\[e_{ss} = \frac{1}{k_v} = 0.25 \]

(2) 当 \(a \neq 0, \quad \zeta = 0.7 \) 时，根据图 3-21 可得系统的开环传递函数为

\[G_K(s) = \frac{8}{s(s + 2 + 8a)} = \frac{\omega_n^2}{s(s + 2\zeta \omega_n)} \]

则 \[\omega_n = 2\sqrt{2} = 2.83, \quad a = \frac{\zeta \omega_n - 1}{4} = 0.245 \]

由于系统是Ⅰ型系统，且 \(k_v = \frac{8}{2 + 8a} = 2.02 \)，故单位斜坡函数输入时系统的稳态误差为

\[e_{ss} = \frac{1}{k_v} = 0.495 \]

(3) \(\zeta = 0.7, \quad e_{ss} = 0.25 \) 时，设系统前向通路增益为 \(K \)，则开环传递函数为

\[G_K(s) = \frac{K}{s(s + 2 + Ka)} = \frac{\omega_n^2}{s(s + 2\zeta \omega_n)} \]

显然是Ⅰ型系统，且 \(k_v = \frac{K}{2 + Ka} \)，单位斜坡函数输入时系统的稳态误差为

\[e_{ss} = \frac{1}{k_v} = \frac{2}{K} + a \]

把 \(\zeta = 0.7, \quad e_{ss} = 0.25 \)，代入可得

\[
\begin{align*}
\omega_n^2 &= K \\
1.4 \times \omega_n &= 2 + K \times a \\
2/K + a &= 0.25
\end{align*}
\]

解得

\[
\begin{align*}
\omega_n &= 5.6 \\
K &= 31.36 \\
a &= 0.186
\end{align*}
\]

【MATLAB 实现】

```matlab
clear all
clc
a=0.186;K=31.36;num1=[8];den1=[1,2,0];
G1=tf(num1,den1);
num_inBack=[a];den_inBack=[1];
G2=tf(num_inBack,den_inBack);
G3=feedback(G1,G2);
h=tf([1],[1]);
G=feedback(G3,h)
```
第 3 章 控制系统的时域分析法

```matlab
Subplot(1,2,1);
step(G,3.5);                       % 绘制单位阶跃响应曲线
title('单位阶跃响应');xlabel('时间');ylabel('输出')
grid on

t=0:0.025:2.5;
u=t;
Subplot(1,2,2);
lsim(G,u,t);                      % 绘制单位斜坡响应曲线
title('单位斜坡响应');xlabel('时间');ylabel('输出')
grid on
```

单位阶跃响应曲线如图 3-22 所示，单位斜坡响应曲线如图 3-23 所示。

![图 3-22 单位阶跃响应曲线](image1)
![图 3-23 单位斜坡响应曲线](image2)

3.5.5 减小稳态误差的方法及复合控制

1. 减小稳态误差的方法

系统总的误差包括给定输入作用下的稳态误差和扰动作用下的稳态误差两部分。要减小或消除稳态误差分别从减小或消除这两部分稳态误差着手。可采取以下措施:

(1) 提高系统开环增益即放大系数。

(2) 增加开环系统中积分环节的个数。但措施 (1) 和 (2) 在一般情况下会使闭环系统平稳性变坏，因此要在系统稳定范围内使用。

(3) 采用复合控制结构。当要求控制系统既要提高稳态精度，又要具有良好的动态特性时，如果单靠加大开环增益或在主通路中串联积分环节，往往不能同时满足上述要求。这时可采用复合控制的方式，下面简单说明。
2. 复合控制

1）按干扰补偿的复合控制结构
按干扰补偿的复合控制结构图如图 3-24 所示。为了补偿扰动 $N(s)$ 对系统产生的影响，引入了扰动的补偿信号，补偿装置为 $G_c(s)$。

系统在扰动作用下的闭环传递函数为

$$ C(s) = \frac{1 - G_1(s)G_c(s)}{1 + G_1(s)G_2(s)} $$

对单一干扰输入下误差的拉普拉斯变换式，若考虑 $R(s) = 0$，则有

$$ E(s) = R(s) - C(s) = -C(s) = -\frac{1 - G_1(s)G_c(s)}{1 + G_1(s)G_2(s)} N(s) $$

若选取 $G_c(s) = \frac{1}{G_1(s)}$，则有

$$ E(s) = -\frac{1 - 1}{1 + G_1(s)G_2(s)} N(s) = 0 $$

式（3-68）表明，当满足 $G_c(s) = \frac{1}{G_1(s)}$ 时，无论受到什么扰动稳态误差都为零。

2）按给定输入补偿的复合控制结构
按给定输入补偿的复合控制结构图如图 3-25 所示。给定输入信号通过补偿装置 $G_c(s)$，产生一补偿信号参与控制。

系统的闭环传递函数为

$$ \frac{C(s)}{R(s)} = \frac{G_1(s) + G_c(s)G_2(s)}{1 + G_1(s)G_2(s)} $$
误差的拉普拉斯变换式为

\[E(s) = R(s) - C(s) = \left[1 - \frac{C(s)}{R(s)} \right] R(s) = \frac{1 - G_c(s)G_s(s)}{1 + G_c(s)G_s(s)} R(s) \]

若选取 \(G_c(s) = \frac{1}{G_c(s)} \)，则有

\[E(s) = 0 \times R(s) = 0 \] (3-69)

以及

\[C(s) = R(s) \] (3-70)

式（3-69）表明，任何输入作用下的稳态误差均为零；输出信号完全跟随输入信号。

【注意】

两种补偿的适用条件是传递函数准确，否则补偿效果变差。对于扰动补偿，还必须是扰动量可检测。

习 题

3-1 有一单位负反馈控制系统的开环传递函数为 \(G_k(s) = \frac{1}{s(2s + 1)} \)，试求系统的单位阶跃响应及动态性能指标。

3-2 某控制系统的微分方程为 \(T \frac{dc(t)}{dt} + c(t) = Kr(t) \)，其中 \(T = 0.5 \)，\(K = 10 \)。初条件为 0。试求 \(t = 1.5s \) 时系统单位阶跃响应和单位斜坡响应的值。

3-3 某温度控制系统结构图如图 3-26 所示。先用温度计测量容器内的水温，发现 1min 的时间才能指示其实际水温值的98% ，如果容器内的水温以 10°C/min 线性增加，试求温度计的稳态指示误差。

3-4 给定位置控制系统结构图如图 3-27 所示。试确定参数 \(K_1 \)，\(K_2 \) 值，使系统阶跃响应的峰值时间 \(t_p = 0.5s \)，超调量 \(\sigma\% = 2% \)。

3-5 一单位负反馈控制系统的开环传递函数为 \(G_k(s) = \frac{\omega_n^2}{s(s + 2 \zeta \omega_n)} \)，已知系统输入 \(r(t) = 1(t) \)，误差时间函数为 \(e(t) = 1.4e^{-1.7t} - 0.4e^{-3.7t} \)，试求系统的阻尼比 \(\zeta \) 、自然频率 \(\omega_n \)、系统的传递函数及系统的稳态误差 \(e_{ss} \)。
3-6 一闭环反馈控制系统结构图如图 3-28 所示。试求：
（1）当 $\sigma \% \leq 20\%$，$t_s(5\%) = 1.8s$ 时，系统的参数 K 及 τ 值。
（2）求上述系统的位置误差系数 k_p、速度误差系数 k_v 和加速度误差系数 k_a。

3-7 某系统结构图如图 3-29 所示，试判断系统的稳定性。

3-8 已知系统特征方程如下:
（1）$s^5 + 3s^4 + 12s^3 + 24s^2 + 32s + 48 = 0$
（2）$s^5 + 3s^4 + 12s^3 + 20s^2 + 35s + 25 = 0$
（3）$s^5 + 4s^4 - 4s^3 + 4s^2 - 7s^2 - 8s + 10 = 0$
（4）$s^6 + s^5 - 2s^4 - 3s^3 - 7s^2 - 4s - 4 = 0$
试用劳斯判据判断系统的稳定性。如不稳定，请指出在 S 右半平面的根数及虚根数。

3-9 已知单位负反馈的开环传递函数为 $G_K(s) = \frac{K(0.5s + 1)}{s(s + 1)(0.5s^2 + s + 1)}$，试确定系统稳定时的 K 值范围。

3-10 已知闭环系统的特征方程式如下:
（1）$0.1s^3 + s^2 + s + K = 0$
（2）$s^4 + 4s^3 + 13s^2 + 36s + K = 0$
试确定系统稳定时的 K 值取值范围。

3-11 已知单位负反馈的开环传递函数为 $G_K(s) = \frac{2}{s(s + 1)(0.5s + 1)}$，试求 $r(t) = 1(t) + 5t + \frac{1}{2}t^2$ 作用下的稳态误差。

3-12 已知单位负反馈控制系统的开环传递函数：
（1）$G_K(s) = \frac{100}{(0.1s + 1)(s + 5)}$
（2）$G_K(s) = \frac{50}{s(0.1s + 1)(s + 5)}$
（3）$G_K(s) = \frac{10(2s + 1)}{s^2(s^2 + 6s + 10)}$
试求：
（1）位置误差系数、速度误差系数和加速度误差系数。
（2）输入 $r(t) = 2t$ 时的稳态误差。
（3）输入 $r(t) = 2 + 2t + t^2$ 时的稳态误差。
3-13 如图 3-30 所示。试求：
(1) \(k_p\), \(k_v\) 和 \(k_a\)。
(2) 当系统的输入分别为 \(50 \cdot 1(t)\), \(50 \cdot 1(t)\) 和 \(50 \cdot 2 \cdot 1(t)\) 时，系统的稳态误差。
(3) 决断系统的形式。

3-14 控制系统结构图如图 3-31 所示。已知 \(r(t) = n(t) = 1(t)\)，试求：
(1) 当 \(K = 40\) 时系统的稳态误差。
(2) 当 \(K = 20\) 时系统的稳态误差。
(3) 在扰动作用点之前的前向通路中引入积分环节 \(\frac{1}{s}\)，对结果有什么影响？在扰动作用点之后引入积分环节 \(\frac{1}{s}\) ，结果又如何？

3-15 某控制系统结构图如图 3-32 所示。其中 \(K_1\), \(K_2\) 为正常数，\(\beta > 0\)，试分析：
(1) \(\beta\) 值的大小对系统稳定性的影响。
(2) \(\beta\) 值的大小对系统在阶跃信号作用下，动态性能指标 \(\%\sigma\) 、\(t_s\) 的影响。
(3) \(\beta\) 值的大小对系统在等速作用下，即 \(r(t) = at\)，其稳态误差的影响。

3-16 锅炉汽包水位控制系统示意图如图 3-33 所示。已知蒸汽负荷与给水量之间的传递函数模型为 \(\frac{T_s s + K_w}{T_s (T_s s + 1)}\)。假定 \(K_w = 1, \ T = 1\)，求：
(1) 使系统稳定的 \(T_s\) 和 \(T_s\) 的取值范围。
(2) 系统跟踪单位斜坡输入时的稳态误差。
控制系统的设计方法

教学要求与学习目标

（1）掌握根轨迹的定义及作用。
（2）掌握根轨迹绘制的基本规则。
（3）掌握根据根轨迹分析系统的性能指标。
（4）熟练掌握使用 MATLAB 绘制根轨迹图。
（5）了解非反馈系统和非最小相位系统。

知识要点

（1）根轨迹的概念和作用：根轨迹方程、根轨迹及其作用。
（2）根轨迹图绘制的基本规则：开环零点、开环极点、根轨迹方程与根轨迹之间的内在联系；绘制根轨迹的基本规则。
（3）根轨迹与系统性能指标之间的关系：参数确定后，确定闭环传递函数；分析系统性能指标。
（4）MATLAB 绘制根轨迹：MATLAB 绘制根轨迹的语句；等阻尼线。

由第 3 章可知，反馈控制系统动态响应（瞬态响应）的基本特性与闭环极点的位置有关，同时，系统的稳定性由闭环极点所决定，因此如果知道闭环极点的位置，就可以分析得出该系统的基本性能；同样，如果能使用闭环极点达到所期望的位置，就能使该闭环系统具有所期望的基本性能，实现系统的综合。

闭环极点就是系统闭环特征方程的根，对于三阶以上的系统，需要求解高阶系统代数方程。我们知道，高阶方程的求解是比较困难的；另外，在系统的设计和调试中，有些参数是经常调整变化的。设计者希望能看到参数变化对极点位置的影响，如果每改变一次参数就要求解一次新的特征方程，这将非常繁琐和困难。
第4章 控制系统的根轨迹法

所谓根轨迹法，就是先用图解的方法在 S 平面上绘制出当系统特征方程中某个参数由零变化到无穷大时，特征方程根连续变化而形成的若干条曲线，即根轨迹；然后再用图解的方法确定，当该参数为某一特定值时的一组闭环特征根，即闭环极点，并依此分析系统所具有的性能；或者在根轨迹上先确定符合系统性能要求的闭环特征根，再用图解的方法求出对应的参数值。

4.1 根轨迹的基本概念

4.1.1 系统的根轨迹

系统结构图如图 4-1 所示，其开环传递函数为（p = 1）

\[G_k(s) = G(s)H(s) = \frac{K}{s(s+1)} \]

式中，K 为前向通路增益与反馈通路增益的乘积，称开环增益（此结构图中的反馈通路增益为 1）。对应的闭环传递函数为

\[\Phi(s) = \frac{C(s)}{R(s)} = \frac{K}{s^2 + s + K} \]

系统的特征方程为

\[D(s) = s^2 + s + K = 0 \]

因此，系统的特征根为

\[s_{1,2} = -\frac{1}{2} \pm \frac{1}{2} \sqrt{1 - 4K} \]

由上式可见，特征根 s_1、s_2 都将随参变量 K（开环增益）的变化而变化。如表 4-1 所示为当 K 由 0 → ∞变化时，特征根相应的变化关系。

<table>
<thead>
<tr>
<th>K</th>
<th>0</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>...</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>0</td>
<td>-0.5</td>
<td>-0.5+j0.5</td>
<td>-0.5+j0.87</td>
<td>...</td>
<td>-0.5+j∞</td>
</tr>
<tr>
<td>s_2</td>
<td>-1</td>
<td>-0.5</td>
<td>-0.5-j0.5</td>
<td>-0.5-j0.87</td>
<td>...</td>
<td>-0.5-j∞</td>
</tr>
</tbody>
</table>

以 K 为参变量，将表中所求得的特征根画在 S 平面上，并将它们连成光滑的曲线，就得到如图 4-2 所示的标准二阶系统根轨迹图。图中“×”表示开环极点 (0,-1)，也就是 K = 0 时的特征根；“〇”表示开环零点（本例无开环零点）；“→”表示 K 增大时根的移动方向。
由图 4-2，对于不同的 K 值，系统有下列三种不同的工作状态：
（1）当 $0 \leq K < 0.25$ 时，$s_{1,2}$ 为两个相异实根。此时系统工作在过阻尼状态。
（2）当 $K = 0.25$ 时，$s_{1,2} = -0.5$ 为两个相等实根。此时系统工作在临界阻尼状态。
（3）当 $0.25 < K < \infty$ 时，$s_{1,2}$ 为一对共轭复根，其实部始终为 -0.5。此时系统工作在欠阻尼状态。

可见，随着 K 的增大，系统的响应由单调变为振荡，且振荡的幅值随 K 的增大而增大。

此外，根据图 4-2 所示的根轨迹图，还可以分析系统的其他性能，如稳定性等。由于根轨迹即闭环极点全部位于 S 左半平面，因此，当 K 为 $0 \rightarrow \infty$ 变化时，闭环系统均为稳定。

上述二阶系统的根轨迹是直接通过特征方程求解得到的，但对高阶系统的特征方程直接求解特征根非常困难，故应避免使用解析法去求解特征根。

4.1.2 根轨迹的幅值条件和相角条件

如图 4-3 所示系统的闭环传递函数为
$$
\Phi(s) = \frac{G(s)}{1 + G(s)H(s)}
$$

其特征方程为 $1 + G(s)H(s) = 0$，或改写成
$$
G(s)H(s) = -1 \tag{4-1}
$$

因为 $G(s)H(s)$ 为复数，由等式两边幅值和相角分别相等的条件，分别可得

幅值条件

$$
|G(s)H(s)| = 1 \tag{4-2}
$$

相角条件

$$
\angle G(s)H(s) = \pm 180^\circ \left(2k + 1\right), \quad k = 0, 1, 2, \ldots \tag{4-3}
$$

将系统的开环传递函数写成零点形式:

$$
G(s)H(s) = K \frac{\prod_{j=1}^{m}(s + z_j)}{\prod_{i=1}^{n}(s + p_i)} \tag{4-4}
$$

式中，K 为开环增益；

$-z_j$、$-p_i$ 为开环零点、开环极点。

将式（4-4）代入式（4-2）和式（4-3），可得另一种形式的幅值条件和相角条件:
第 4 章 控制系统的根轨迹法

幅值条件
\[
\frac{\prod_{j=1}^{m} |s + z_j|}{\prod_{j=1}^{n} |s + p_j|} = 1
\] (4-5)

或
\[
\frac{\prod_{j=1}^{m} |s + z_j|}{\prod_{j=1}^{n} |s + p_j|} = \frac{1}{K}
\] (4-6)

相角条件
\[
\sum_{j=1}^{m} \angle(s + z_j) - \sum_{j=1}^{n} \angle(s + p_j) = \pm 180^\circ (2k + 1), \quad k = 0, 1, 2, \ldots
\] (4-7)

【注意】

① 若在 S 平面上有点 \(s_0\) 是闭环特征方程式的根，则一定会满足上两个等式：幅值条件和相角条件。

② 反过来，如果在 S 平面上有点 \(s_0\) 满足幅值条件和相角条件这两个等式，则该点也一定是闭环特征方程式的根，该点也必定在根轨迹上。

③ 检验 S 平面上的某点是否在根轨迹上时，可用相角条件判定，再用幅值条件计算出该点对应的开环增益 \(K\)。

④ 只要利用相角条件就可画出根轨迹，即绘制根轨迹无需考虑幅值条件。凡是满足相角条件的点必定同时满足幅值条件，而满足幅值条件的点未必能满足相角条件。

⑤ 绘制根轨迹的一般步骤是先找出 S 平面上满足相角条件的点，并把它们连成光滑曲线，再根据需要，用幅值条件确定此点对应的 \(K\) 值或闭环极点。

4.2 绘制根轨迹的基本规则

4.2.1 基本规则

规则一 根轨迹的连续性
闭环系统的特征方程代数方程，可以将代数方程视为以开环增益 \(K\) 为自变量的函数。当 \(K\) 由 0 变化至无穷大时，代数方程的根也连续变化，所以特征方程的根是连续的。

规则二 根轨迹的对称性
因为线性系统特征方程的系数均为实数，所以系统的特征根必然是实数或共轭复数。因此，根轨迹必对称于实轴。

规则三 根轨迹的支数
\(n\) 阶系统对于 \(K\) 取任一值，都有 \(n\) 个特征根。当 \(K\) 由 0 变化至无穷大时，\(n\) 个特征根在 S 平面上连续变化形成了 \(n\) 支根轨迹。故根轨迹的分支数为系统的阶次数。
规则四 根轨迹的起点和终点
根轨迹的起点是指 $K = 0$ 时根轨迹的点。当 $K = 0$，式（4-6）的右边为 ∞，而左边只有当 $s = -p_i (i = 1, 2, \cdots, n)$ 时才为 ∞，使式（4-6）成立。而 $-p_i (i = 1, 2, \cdots, n)$ 就是开环极点。所以根轨迹起始于开环极点。

根轨迹的终点是指 $K \to \infty$ 时根轨迹的点。当 $K \to \infty$，式（4-6）的右边为 0，左边只有当 $s = -z_j (j = 1, 2, \cdots, m)$ 时才为 0，才能使式（4-6）成立。因为 $-z_j (j = 1, 2, \cdots, m)$ 是开环零点，所以根轨迹终止于开环零点（含无限零点）。

当 $n > m$ 时，只有 m 支根轨迹终止于有限值的零点处，其余的 $n - m$ 支根轨迹终止于无穷远处（无限零点）。

规则五 实轴上的根轨迹
实轴上右边开环零点、开环极点数目之和为奇数的线段有根轨迹，为偶数的没有根轨迹。

这个结论可用相角条件来证明。如图 4-4 所示，在实轴上任取一实验点 s，并将 s 与各开环零、极点之间的相角表示其中。

由该图可知：
① s 与每一对共轭极点或零点所构成的相角之和等于 360°。
② s 与所有位于其左边实轴上的零、极点所构成的相角为 0°。
③ s 与所有位于右边实轴上零、极点所构成的相角均为 $180^\circ (2k + 1)$，$k = 0, 1, 2, \cdots$。

因此，规则五正确。

规则六 分离点和会合点
几条根轨迹在 S 平面上相遇后又分开的点，称为根轨迹的分离点和会合点，如图 4-5 所示。
第一种求法
因为根轨迹就是特征方程的根在 S 平面上的轨迹，因此在分离点或会合点处特征方程必有重根，求解特征方程的重根即可确定分离点和会合点的位置。

将系统的开环传递函数写成
$$G(s)H(s) = K \frac{N(s)}{D(s)}$$

特征方程可表示为
$$1 + K \frac{N(s)}{D(s)} = 0$$
或
$$K = -\frac{N(s)}{D(s)} \quad (4-8)$$

分离点或会合点由下式求解：
$$\frac{d}{ds} \left[1 + K \frac{N(s)}{D(s)} \right] = K \frac{d}{ds} \left[\frac{N(s)}{D(s)} \right] = 0 \quad (4-9)$$

第二种求法
分离点或会合点 d 也可根据式（4-10）确定：
$$\sum_{i=1}^{m} \frac{1}{d-p_i} = \sum_{j=1}^{n} \frac{1}{d-z_j} \quad (4-10)$$

如果无开环零点，那么分离点或会合点 d 可根据式（4-11）确定
$$\sum_{i=1}^{m} \frac{1}{d-p_i} = 0 \quad (4-11)$$

【注意】
① 式（4-9）～式（4-11）是确定分离点和会合点的必要条件，但不是充分条件。式中的解，只有对应的开环增益 K 为正值时的解才是分离点或会合点。
② 位于实轴上的两个开环极点之间的根轨迹上，必定存在分离点；位于实轴上的两个开环零点之间（含无穷零点）的根轨迹上，必定存在会合点。
③ 根轨迹以 $\pm \frac{\pi}{2}$ 的角度方向离开分离点或进入会合点。

【例 4-1】某控制系统开环传递函数为 $G_0(s) = \frac{K}{s(s+1)(s+2)}$，试求分离点和会合点。
【解】例中显然 $N(s) = 1$，则
$$D(s) = s(s+1)(s+2) = s^3 + 3s^2 + 2s$$
代入式（4-9）得
$$3s^3 + 6s^2 + 2 = 0$$
解此方程，得
$$s_1 = -0.423, s_2 = -1.577$$
代入幅值条件式（4-5），得
自动控制原理

由于增益 K 不可能为负值, 因此 s_1 是分离点或会合点, 而 s_2 不是。

规则七 根轨迹的渐近线

当系统的开环极点数 n 大于开环零点数 m 时, 有 $n - m$ 条根轨迹终止于无穷远处。根轨迹渐近线就指这些终止于无限远的根轨迹线的走向, 如图 4-6 所示。

渐近线在实轴上交于一点, 称为渐近线的形心。形心在实轴上的坐标为

$$
-\sigma_n = \frac{\sum_{i=1}^{n} (-p_i) - \sum_{j=1}^{m} (-z_j)}{n-m}
$$

(4-12)

这些渐近线与实轴正方向的夹角为

$$
\varphi_n = \pm \frac{180\degree(2k+1)}{n-m}, k = 0, 1, 2, \cdots
$$

(4-13)

【例 4-2】试求例 4-1 中系统的渐近线。

【解】没有零点。开环极点为

$$
-p_1 = 0, -p_2 = -1, -p_3 = -2
$$

则

$$
-\sigma_n = \frac{0 + (-1) + (-2)}{3-0} = -1
$$

$$
\varphi_n = \pm \frac{180\degree(2k+1)}{3-0} = \pm 60\degree, 180\degree
$$

规则八 根轨迹与虚轴的交点

当根轨迹与虚轴相交时, 闭环特征根中出现共轭虚根。此时系统处于临界稳定状态, 交点处对应的 K 称为临界稳定开环根轨迹增益。求解方法有两种:

1) 利用劳斯判据

【例 4-3】已知单位负反馈控制系统的开环传递函数为

$$
G(s)H(s) = \frac{K}{s(s+2)(s+4)}
$$

试求根轨迹与虚轴的交点。

【解】系统的闭环特征方程为 $s^3 + 6s^2 + 8s + K = 0$, 其劳斯表如下:

<table>
<thead>
<tr>
<th>s^3</th>
<th>1</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>s^2</td>
<td>6</td>
<td>K</td>
</tr>
<tr>
<td>s^1</td>
<td>$\frac{48-K}{6}$</td>
<td>0</td>
</tr>
<tr>
<td>s^0</td>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>

当劳斯表中出现某行全为零时, 系统闭环特征根存在共轭复根。令 s^1 行全为零, 则 $K = 48$。
用 s^1 行的上一行 s^2 行构成辅助方程，得 $6s^2 + K = 0$，即 $6s^2 + 48 = 0$。求得 $s_{1,2} = \pm j2\sqrt{2}$。即根轨迹中有两支分别交于虚轴的点 $s_1 = j2\sqrt{2}$ 和 $s_2 = -j2\sqrt{2}$，临界开环根轨迹增益为 $K = 48$。

2）令 $s = j\omega$ 代入闭环特征方程

令 $s = j\omega$ 代入闭环特征方程 $1 + G(s)H(s) = 0$，分别令其实部和虚部等于零。上例中，令 $s = j\omega$ 代入 $s^3 + 6s^2 + 8s + K = 0$，得

$$-j\omega^3 - 6\omega^2 + j8\omega + K = 0$$

实部和虚部分别等于零，得

$$\begin{cases}
\omega = \pm 2\sqrt{2} \\
K = 48
\end{cases}$$

$$\begin{cases}
\omega = 0 \\
K = 0
\end{cases}$$

（舍去）

规则九 根轨迹的出射角与入射角

当开环极点为复数时，根轨迹将以与水平正方向成一定的夹角从复数极点出发，这一角度称为出射角；根轨迹将以与水平正方向成一定的夹角到达零点，这一角度称为入射角。

如图 4-7 所示，表示根轨迹的出射角和入射角。

图 4-7 根轨迹的出射角和入射角示意

出射角的角度计算如下：

$$\theta_{pk} = 180\left(2k + 1\right) + \sum_{j=1}^{m} \angle \left(-p_k + z_j \right) - \sum_{i=1,i\neq k}^{n} \angle \left(-p_i + p_k \right), \quad k = 0,1,2,\cdots \quad (4-14)$$

入射角的角度计算如下：

$$\theta_{sk} = 180\left(2k + 1\right) + \sum_{j=1}^{m} \angle \left(-s_k + z_j \right) - \sum_{i=1}^{n} \angle \left(-s_i + p_k \right), \quad k = 0,1,2,\cdots \quad (4-15)$$

【证明】

在开环极点 $-p_k$ 附近的根轨迹上取一点 $-s_1$，因该点在根轨迹上，故满足相角条件式 (4-7)

$$\sum_{j=1}^{m} \angle \left(-s_1 + z_j \right) - \sum_{i=1,i\neq k}^{n} \angle \left(-s_i + p_k \right) - \angle \left(-s_1 + p_k \right) = \pm 180^\circ (2k + 1)$$

即有

$$\angle \left(-s_1 + p_k \right) = \sum_{j=1}^{m} \angle \left(-s_1 + z_j \right) - \sum_{i=1,i\neq k}^{n} \angle \left(-s_i + p_k \right) \mp 180^\circ (2k + 1)$$

当 $-s_1$ 无限接近于开环极点 $-p_k$ 时，上式左端即为出射角：

$$\theta_{pk} = \lim_{-s_1 \to -p_k} \angle \left(-s_1 + p_k \right) = \sum_{j=1}^{m} \angle \left(-s_1 + z_j \right) - \sum_{i=1,i\neq k}^{n} \angle \left(-s_i + p_k \right) \mp 180^\circ (2k + 1)$$
同理，在闭环零点 z_k 附近的根轨迹上取一点，使其无限接近该零点，也可证明入射角计算公式（4-15）。

规则十 根轨迹的走向
控制系统有 n 支根轨迹，若某些根轨迹往左方向变化时，则另一些根轨迹必定往右方向变化；一些根轨迹往上变化时，另一些根轨迹必往下变化。根轨迹绘制的基本规则见表 4-2。

表 4-2 根轨迹绘制的基本规则

<table>
<thead>
<tr>
<th>序号</th>
<th>内容</th>
<th>规则</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>根轨迹的连续性和对称性</td>
<td>根轨迹是连续的，并且是对称于实轴</td>
</tr>
<tr>
<td>2</td>
<td>根轨迹的起点、终点及分支数</td>
<td>根轨迹的分支数等于开环传递函数的最高阶次数 n；根轨迹从开环极点出发，到开环零点终止（包括无限零点）。有 $n-m$ 支根轨迹趋向于无限零点（m 为开环零点数）</td>
</tr>
<tr>
<td>3</td>
<td>根轨迹在实轴上的分布</td>
<td>实轴上某段成为根轨迹的条件：其左边开环零点、极点数目之和为奇数</td>
</tr>
</tbody>
</table>
| 4 | 根轨迹渐近线 | $n-m$ 支渐近线与实轴的交点：
$$\sum_{i=1}^{m} (-p_i) - \sum_{j=1}^{m} (-z_j) = \frac{n-m}{2}$$ |
| 5 | 根轨迹的分离点和会合点 | 根轨迹的分离点和会合点满足如下方程式：
$$\frac{d}{ds} \left[1 + \frac{N(s)}{D(s)} \right] = 0$$ |
| 6 | 根轨迹的出射角和入射角 | 出射角的角度计算公式如下：
$$\theta_{ex} = 180^\circ \left(2k + 1 \right) + \sum_{j=1}^{m} \left(-p_j + z_j \right) - \sum_{j=1}^{m} \left(-p_j + z_j \right)$$ |
| 7 | 根轨迹与虚轴的交点 | 以 $s=j\omega$ 代入闭环特征方程式求解或利用劳斯判据确定 |

表 4-3 常见开环零点、极点分布及其对应的根轨迹图

一些常见开环控制系统的零点、极点分布及其与之对应的根轨迹图见表 4-3。
第 4 章 控制系统的根轨迹法

4.2.2 根轨迹绘制举例

【例 4-4】已知控制系统开环传递函数为 \(G(s) = \frac{K(s+4)}{s(s+2)} \)，试绘制其根轨迹。

【解】系统有两个开环极点 \(p_1 = 0 \), \(p_2 = -2 \); 一个开环零点 \(z_1 = -4 \); \(n = 2 \), \(m = 1 \)。

（1）根轨迹的起始点、终止点和分支数。根轨迹的起始点、终止点分别是开环极点，\(p_1 = 0 \), \(p_2 = -2 \) 和一个开环零点 \(z_1 = -4 \) 以及一个无限远处的零点。根轨迹的分支数为 2。

（2）实轴上的根轨迹。实轴上的根轨迹区间是 \([-2, 0]\) 和 \((-\infty, -4]\)。

（3）渐近线。该系统的根轨迹渐近线有 \((n-m) = 1 \)，计算它与实轴的夹角 \(\varphi_a \) 和交点坐标 \(-\sigma_a\):

\[
\varphi_a = \pm \frac{180^\circ (2k + 1)}{n - m} = 180^\circ, \quad -\sigma_a = \frac{\sum (-p_i) - \sum (-z_j)}{n - m} = \frac{(0 + 2) - (4)}{2 - 1} = -2
\]

（4）根轨迹的分离点与会合点。

起始于开环极点，\(p_1 = 0 \), \(p_2 = -2 \) 的两支根轨迹在 \([-2, 0]\) 区间存在分离点 \(a \)；终止于开环零点 \(z_1 = -4 \) 以及无穷远处的两支根轨迹在 \((-\infty, -4]\) 区间存在会合点 \(b \)，按照规则，可以计算出 \(a \)、\(b \) 的坐标:

\[
a = -1.17, \quad b = -6.83
\]

（5）根轨迹与虚轴交点。

将 \(s = j\omega \) 代入特征方程式，再令方程中的实部和虚部分别等于零，则有

\[
K = 0, \quad \omega = 0
\]

因此，根轨迹与虚轴在 \(\omega = 0 \) 处相交，对应的 \(K = 0 \)。
（6）根轨迹在开环极点处的出射角和开环零点处的入射角。
依据规则九，可计算出根轨迹在开环极点 \(p_1 = 0, \ p_2 = -2 \) 的出
射角和在开环零点 \(z_1 = -4 \) 处的入射角
\[
\theta_{p_1} = 180^\circ, \quad 0; \quad \theta_{z_1} = 0^\circ
\]
绘制出开环控制系统完整的根轨迹图如图 4-8 所示。
【MATLAB 实现】
由 MATLAB 绘制根轨迹图如图 4-9 所示。

```matlab
clear all
clc
num=[1,4];den=[1,2,0];
rlocus(num,den) % 绘制根轨迹图
grid
title('根轨迹图');xlabel('实轴');ylabel('虚轴')
```

【例 4-5】设一个单位负反馈控制系统开环传递函数为
\[
G_K(s) = \frac{K}{s(s+3)(s^2+2s+2)}
\]
试用 MATLAB 绘制系统的根轨迹。
【MATLAB 实现】
由 MATLAB 绘制根轨迹图如图 4-10 所示。

```matlab
clear all
clc
G=tf(1,[conv([1,3],[1,2,2]),0]); % 利用卷积函数
```

![图 4-9 例 4-4 系统的根轨迹图 (MATLAB)](image1)
![图 4-10 例 4-5 系统的根轨迹图 (MATLAB)](image2)
【例 4-6】已知系统开环传递函数为

\[G_1(s) = \frac{K}{s(s+4)(s+2-4i)(s+2+4i)} \]

而 \(G_2(s) \) 的传递函数是将 \(G_1(s) \) 的分子增加一个零点 \(-5\)。试绘制出根轨迹。

【MATLAB 实现】

```matlab
clear all
c1c
num=1;
den=[conv([1,4],conv([1,2-4i],[1,2+4i])),0]; %利用卷积
G1=tf(num,den);
G2=tf([1,5],den);
rlocus(G1,G2) %绘制根轨迹
V=[-15 5 -15 15];
axis(V);
sgrid(0.707,10); %绘制阻尼比 0.7，自然频率 10 的线
title('根轨迹图');xlabel('实轴');ylabel('虚轴')
```

由 MATLAB 绘制根轨迹图如图 4-11 所示。
【例 4-7】已知控制系统开环传递函数为
\[G_K(s) = \frac{K(s+1)}{s^2(s+4)(s+6)} \]
试绘制根轨迹，并确定使闭环系统稳定的 \(K \) 范围。
【解】(1) 实轴上的根轨迹。
\[[-4,-1], \ [-6,-\infty) \]
(2) 根轨迹的渐近线。
\[\sigma_a = \frac{-6 - 6 + 1}{3} = -3, \ \varphi_a = \pm \frac{\pi}{3}, \ \pi \]
(3) 根轨迹与虚轴的交点。
由系统的开环传递函数可知闭环特征方程为
\[D(s) = s^4 + 10s^3 + 24s^2 + Ks + K = 0 \]
即
\[\begin{cases} \omega^4 - 24\omega^2 + K = 0 \\ -10\omega^3 + K\omega = 0 \end{cases} \]
由于 \(\omega \neq 0 \)，故可解得
\[\omega = 3.74, \ K = 139.9 \]
则当 \(K < 139.9 \) 时，闭环系统稳定。

【MATLAB 实现】
```matlab
clear all
clc
num=[1,1];
d1=conv([1,4],[1,6]); %一次卷积
d2=conv([1,0],[1,0]); %一次卷积
den=[conv(d1,d2)]; %再次卷积
G=tf(num,den); %求传递函数
rlocus(G) %绘制根轨迹
V=[-10 5 -6 6]; %设置坐标尺寸
axis(V); %设置坐标尺寸
title('根轨迹图');xlabel('实轴');ylabel('虚轴')
```
根轨迹如图 4-12 所示。使用“数据游标”求得的临界增益 \(K = 140 \)，与计算结果基本吻合。

【例 4-8】已知系统开环传递函数为
\[G_K(s) = \frac{K(0.25s+1)}{s(0.5s+1)} \]
试确定系统无超调情况下的 \(K \) 值。
【解】系统的开环传递函数可变换为：
\[G_K(s) = \frac{K(0.25s+1)}{s(0.5s+1)} = \frac{0.5K(s+4)}{s(s+2)} \]
令 $K^* = 0.5K$, K^* 为根轨迹增益。
由系统的开环传递函数可知，该系统的闭环特征方程为
$$D(s) = s^2 + (K^* + 2)s + 4K^* = 0$$
解得
$$s_{1,2} = -\frac{1}{2}(K^* + 2) \pm \frac{1}{2}\sqrt{(K^* + 2)^2 - 16K^*}$$
欲使系统无超调，则应使下式成立
$$(K^* + 2)^2 - 16K^* \geq 0$$
解得
$$K^* \geq 11.66 \text{ 或 } K^* \leq 0.34$$
故在系统无超调情况下，$K \geq 23.32 \text{ 或 } K \leq 0.68$。

【MATLAB 实现】
```matlab
clear all
clc
G=zpk([-4],[0,-2],1); %以 zpk 函数的形式定义传递函数
rlocus(G)
V=[-8 0 -3 3];
axis(V);
title('根轨迹图');xlabel('实轴');ylabel('虚轴')
```
其根轨迹如图 4-13 所示。

【例 4-9】 已知开环传递函数为
$$G(s)H(s) = \frac{K(s + 4)(s + 8)}{s(s + 12)^2}$$
试绘制根轨迹，并求阻尼比 $\zeta = 0.76$ 的增益 K 值。

【MATLAB 实现】
```matlab
clear all
clc
num=[conv([1,4],[1,8])];d1=conv([1,0],[1,0]);d2=conv([1,12],[1,12]);den=[conv(d1,d2)];
G=tf(num,den);
rlocus(G)
V=[-15 2 -6 6];
axis(V);
sgrid
%绘制等阻尼线和等自然频率线
title('根轨迹图');xlabel('实轴');ylabel('虚轴')
```
根轨迹如图 4-14 所示。使用“数据游标”求得 $\zeta = 0.76$ 的增益 $K = 128$
4.3 参量根轨迹及系统性能的根轨迹分析

4.3.1 参量根轨迹

上述以开环增益 K 为可变参量绘制的根轨迹常称为常规根轨迹。然而在实际控制系统设计中，为了达到所期望的系统性能指标，往往需要涉及多个参数相互匹配和协调，如时间常数、反馈增益、开环零点和开环极点等参数。这种以非增益 K 为可变参量绘制的根轨迹称为参量根轨迹或广义根轨迹。

绘制参量根轨迹时，需要先将可变参量转换为相当于开环增益 K 的位置，然后运用 4.2 节的规定和方法绘制根轨迹。下面举例说明具体绘制方法。

【例 4-10】设单位负反馈控制系统的开环传递函数为 $G(s) = \frac{4}{s(s+a)}$，绘制系统以 a 为参量的根轨迹。

【解】系统的特征方程为

$$1 + \frac{4}{s(s+a)} = 0$$

即

$$s^2 + as + 4 = (s^2 + 4) + as = 0$$

将等式左边的第一项除全式，得

$$1 + a - \frac{s}{s^2 + 4} = 0$$

上式已将参量 a 转换到 K 的位置上。根据 4.2 节的规定绘制参量 a 由零变化至无穷大时的根轨迹，如图 4-15 所示。
第 4 章 控制系统的根轨迹法

一般来说，首先将控制系统特征方程转换为如下形式

\[P(s) + aQ(s) = 0 \]

其中 \(P(s) \) 和 \(Q(s) \) 为 \(s \) 的常系数多项式，不含参变量 \(a \)。再将全式除以第一项 \(P(s) \) 得

\[1 + a \frac{Q(s)}{P(s)} = 0 \]

（4-16）

上式已经将 \(a \) 转换到 \(K \) 的位置上，如下就可按照 4.2 节的规则绘制参量根轨迹。

4.3.2 系统性能的根轨迹分析

设计、分析系统，主要涉及两个方面的内容：一是根据绘制的根轨迹，希望能知道系统的性能大致如何，若性能不好或不理想，知道如何变动根轨迹；二是根据期望的动态性能，在根轨迹上确定系统中某些参数的值，如开环根轨迹增益 \(K^* \)。

1. 增加开环零点、极点对根轨迹的影响

根轨迹的形状由控制系统开环零点、极点的分布决定，若开环零点、极点分布改变，根轨迹形状就改变，系统的性能也就随之改变。因此，在系统中加入适当的开环零点或极点可以改善系统的稳态和动态性能。表 4-4 分别给出了增加开环零点和开环极点对根轨迹的影响。

<table>
<thead>
<tr>
<th>描述</th>
<th>原根轨迹</th>
<th>情况一</th>
<th>情况二</th>
</tr>
</thead>
<tbody>
<tr>
<td>增加开环零点 (z)</td>
<td>![图示]</td>
<td>![图示]</td>
<td>![图示]</td>
</tr>
<tr>
<td>增加开环极点 (p)</td>
<td>![图示]</td>
<td>![图示]</td>
<td>![图示]</td>
</tr>
</tbody>
</table>

【注意】

① 增加开环零点后，根轨迹向零点方向弯曲，如果零点位置选择适当，将改变系统的稳定性和动态性能。

② 若加入的开环零点和开环极点相距很近，则两者的作用相互抵消（两者组成为“偶极子”）。因此可用加入零点的方法来抵消有损于系统性能的极点。

③ 增加开环极点后，根轨迹将向右弯曲，不利于系统稳定性和动态性能，故一般不希望单独增加开环极点。
【例 4-11】已知单位负反馈控制系统的开环传递函数为

\[G_k(s) = \frac{K}{s(s + 4)} \]

若增加一个零点 \(z = -6 \)，试绘制根轨迹，并比较增加零点后对系统性能的影响。

【MATLAB 实现】

```matlab
clear all
clc
num1=1; den1=[conv([1,0],[1,4])];
G1=tf(num1,den1);
subplot(1,2,1);
rlocus(G1)
title('根轨迹图');xlabel('实轴');ylabel('虚轴');
num2=[1,6];
G2=tf(num2,den1);
subplot(1,2,2);
rlocus(G2)
title('根轨迹图');xlabel('实轴');ylabel('虚轴');
V=[-11, 1, -10, 10];
axis(V);
```

如图 4-16 所示可知，在增加零点之前，系统为典型的二阶系统，根轨迹在 \(S \) 平面上是两支直线图形，且在 -2 点处以 90°分开，闭环特征根靠近虚轴。因此，稳定性和动态特性较差。增加零点 \(z = -6 \) 后，根轨迹沿圆弧向左弯曲，系统的稳定性和动态特性能得到改善。

![图 4-16 例 4-11 系统根轨迹](image)
第 4 章 控制系统的根轨迹法

2. 使用根轨迹分析系统性能

由第三章时域分析法中的静态性能知，由“系统型号”即零值开环极点的个数和放大系数决定系统的静态性能。在根轨迹中，“坐标原点上的开环极点个数”就反映了“系统型号”。

利用根轨迹分析控制系统的动态性能时，往往采用“闭环主导极点”的思想，即认为系统的性能主要由一对“闭环主导极点”来决定，从而利用二阶系统的相关公式去分析和综合设计系统。

【例 4-12】控制系统开环传递函数为

\[G_K(s) = \frac{K}{s(s + 2)(s + 4)} \]

试确定阻尼比 \(\zeta = 0.5 \) 时的主导极点及响应的超调量 \(\sigma \% \) 和调节时间 \(t_s \)。

【解】（1）绘制根轨迹

【MATLAB 实现】

```
clear all
clc
num=1; den=conv([1,0],conv([1,2],[1,4]));
G=tf(num,den);
rlocus(G);
V= [-5 2 -4 4];
axis(V);
sgrid(0.5,0);
title('根轨迹图');xlabel('实轴');ylabel('虚轴');
```

由图 4-17 可见，在等阻尼线 \(\zeta = 0.5 \) 时，与根轨迹线相较于一点，此点的自然振荡频率 \(\omega_n = 1.34 s^{-1} \)，利用 3.3.3 节的有关公式，可计算出动态响应性能指标 \(\sigma% = \frac{3}{\zeta \omega_n} \times 100% = 16.3% \)，

\[t_s = \frac{3}{\zeta \omega_n} = 4.5 s \]

图 4-17 例 4-12 系统根轨迹
习 题

4-1 设系统开环传递函数的零、极点在 S 平面上的分布如图 4-18 所示。试概略绘制系统根轨迹图。

4-2 已知单位负反馈的开环传递函数为 $G(s)H(s) = \frac{K}{s(s^2 + 2s + 2)}$，试概略绘制根轨迹。

4-3 已知单位负反馈控制系统的开环传递函数为 $G(s)H(s) = \frac{K}{s(s + 2)(s + 4)}$。试:

(1) 概略绘制根轨迹。
(2) 确定系统呈阻尼振荡瞬态响应的 K 值。
(3) 确定系统产生持续等幅振荡的 K 值和自然振荡频率。

4-4 已知单位负反馈系统的开环传递函数，试概略绘制根轨迹。

(1) $G_K(s) = \frac{K}{s(s + 1)(2s + 2)}$
(2) $G_K(s) = \frac{K(s + 5)}{s(s + 2)(s + 4)}$
(3) $G_K(s) = \frac{K}{s(s + 1)(s + 3.5)(s + 3 + j2)(s + 3 - j2)}$

4-5 已知单位负反馈控制系统的开环传递函数为 $G_K(s) = \frac{K(s + 5)}{s(s^2 + 3s + 9)}$，试用根轨迹法确定使闭环系统稳定的开环增益 K 值范围。

4-6 某单位负反馈系统的开环传递函数为 $G_K(s) = \frac{K}{(0.5s + 1)^2}$，试根据闭环系统根轨迹，分
析系统稳定性，并估算$\sigma% = 16.3\%$时的K值。

4-7 已知单位负反馈的开环传递函数为$G_k(s) = \frac{(s + a)}{s^2(s + 1)}$，试概略绘制参量$a$由$0 \rightarrow \infty$变化时的系统参量根轨迹。

4-8 已知系统的动态图结构如图4-19所示。试绘制时间常数T变化时系统的参量根轨迹，并分析参数T的变化对系统动态性能的影响。

4-9 设单位负反馈系统的开环传递函数为$G_k(s) = \frac{K(s + z)}{s(s + 2)(s^2 + 4s + 16)}$。

试用MATLAB编程，当开环极点$z = -1$和1时，分别绘制出该系统的根轨迹，对比分析将会得到什么结论。

4-10 设单位负反馈控制系统的开环传递函数为$G_k(s) = \frac{K}{s(s + 25)(s^2 + 1000s + 2600)}$。

试由根轨迹法确定阻尼比$\zeta = 0.5$时的闭环主导极点和对应的K值。

4-11 已知反馈控制系统的闭环传递函数为

$$C(s) = \frac{K(s + 4)}{R(s)} = \frac{K(s + 4)}{s^3 + 24s^3 + (4K + 169)s^2 + 48Ks + 128K}$$

当K从$0 \rightarrow \infty$时，试概略绘制根轨迹图，并求取重极点对应的K值。

4-12 已知系统结构图如图4-20所示。要求：（1）绘制根轨迹图；（2）确定系统稳定时的最小阻尼比。

图4-19 动态结构图

图4-20 习题4-12结构图
控制系统的频域分析法

教学要求与学习目标

（1）掌握频率特性的基本概念及图示法。
（2）掌握典型环节的频率响应特性。
（3）了解奈奎斯特稳定性判据及其应用。
（4）熟练掌握基于频率特性的控制系统分析。
（5）掌握使用 MATLAB 绘制频率特性图及其设计方法。

知识要点

（1）频率特性的概念和作用：正弦波信号的拉普拉斯变换、输出信号在正弦波信号作用下的时域表达式。
（2）频率特性的图示：幅相频率特性图、对数频率特性图。
（3）奈奎斯特稳定性判据：奈奎斯特稳定性判据公式、图解法判断稳定性方法。
（4）MATLAB 绘制频率特性图：MATLAB 绘制奈奎斯特图、伯德图的语句。
（5）几个重要指标参数：相位裕量、截止频率、交界频率及其与时域指标超调量和调节时间之间的关系。

线性控制系统的时域分析法，在分析低阶系统时，很直观明了。然而在工程实际应用中，遇到的大部分都是高阶系统，若继续采用时域分析法求解高阶系统的响应，非常困难。

频域分析法的基本思想是：控制系统中的各个变量看成一些信号，此信号又由许多不同频率的正弦信号合成的，各变量的运动就是系统对各个频率信号的响应总和。其核心就是解决控制系统的稳定性、快速性和准确性。
第 5 章 控制系统的频域分析法

5.1 频率特性的一般知识

5.1.1 频率特性的物理概念

如图 5-1 所示为典型的 RC 滤波电路，我们将以此网络为例，说明频率特性的一般概念。其中，\(u_i(t) \)、\(u_o(t) \) 分别为输入信号和电路的输出响应，其传递函数为

\[
G(s) = \frac{U_o(s)}{U_i(s)} = \frac{1}{RCS + 1} = \frac{1}{Ts + 1} \tag{5-1}
\]

根据前几章的知识，当输入信号 \(u_i(t) = u_m \sin \omega t \) 时，得到线路输出信号

\[
u_o(t) = \frac{u_m T \omega}{1 + T^2 \omega^2} e^{-\frac{t}{T}} + \frac{u_m}{\sqrt{1 + T^2 \omega^2}} \sin(\omega t + \varphi) \tag{5-2}
\]

式中，\(\varphi = \tan^{-1} T \omega \)。\(u_o(t) \)的第一部分为瞬态分量，随时间按指数规律衰减，趋于零；第二部分为稳态分量，波形呈正弦周期变化，不会随时间衰减。

因此，正弦输入信号经过滤波电路后的稳态输出是与输入信号相同频率的正弦信号，只是幅值和相位不同。正弦稳态输出与输入的幅值比为

\[
A(\omega) = \frac{1}{\sqrt{1 + T^2 \omega^2}} \tag{5-3}
\]

而稳态输出与正弦输入的相位差为

\[
\varphi(\omega) = \tan^{-1} T \omega \tag{5-4}
\]

时域波形图如图 5-2 所示。稳态正弦信号输出与正弦信号输入频率是相同的，幅值比和相位差按式 (5-3) 和式 (5-4) 规律计算。

5.1.2 频率特性的定义

1. 定义

频率特性又称为频率响应，其定义如下：

\(\text{频率特性} \)：线性系统对正弦信号输入的稳态输出响应。

\(\text{幅频特性} \)：稳态输出幅值与输入幅值之比 \(A(\omega) \)。

\(\text{相频特性} \)：稳态输出相位与输入相位之差 \(\varphi(\omega) \)。
自动控制原理

系统的频率特性包含幅频特性和相频特性，可表示为

\[G(j\omega) = A(\omega)e^{j\phi(\omega)} \] \hspace{1cm} (5-5)

2. 表示方法

\(G(j\omega) \) 是频率特性的通用表示形式，它是频率 \(\omega \) 的复变函数，可用指数形式或者幅相形式表示:

\[G(j\omega) = A(\omega)e^{j\phi(\omega)} = |G(j\omega)|e^{j\phi(\omega)} = A(\omega)\angle \phi(\omega) \] \hspace{1cm} (5-6)

当然也可将 \(G(j\omega) \) 分解为实部和虚部的形式

\[G(j\omega) = R(\omega) + jI(\omega) \] \hspace{1cm} (5-7)

式中，\(R(\omega) \) 称为实频特性，\(I(\omega) \) 称为虚频特性。由复数的基本概念，得:

\[A(\omega) = \sqrt{R^2(\omega) + I^2(\omega)} \]
\[\phi(\omega) = \tan^{-1}\frac{I(\omega)}{R(\omega)} \]
\[R(\omega) = A(\omega)\cos\phi(\omega) \]
\[I(\omega) = A(\omega)\sin\phi(\omega) \]

频率特性的表示方法虽然有很多种形式，但是实质都相同，都是用来表征系统内部结构以及对不同频率的输入信号的传递能力，是控制系统频域分析法的数学模型，相互之间可以转换。

3. 物理意义

频率特性 \(G(j\omega) \) 的模 \(|G(j\omega)| = A(\omega)\) 描述了系统对不同频率的正弦信号输入量的放大（或缩小）特性。频率特性 \(G(j\omega) \) 的相位 \(\phi(\omega) \) 则描述了系统对不同频率的正弦输入信号在相位上的超前（或滞后）。频率特性反映系统对不同频率信号的响应特性，也反映了控制系统内在的动态性能。通过研究分析系统的频率特性可以间接地分析并改进系统的性能。

4. 频率特性的求取

由式（5-1）～式（5-5）可知，频率特性 \(G(j\omega) \) 与传递函数 \(G(s) \) 之间存在下列关系

\[G(j\omega) = G(s)|_{s=j\omega} \] \hspace{1cm} (5-8)

即将传递函数中的 \(s \) 用 \(j\omega \) 代替，就可以得到系统的频率特性。

【例 5-1】系统动态结构图如图 5-3 所示，试根据频率特性的定义，求 \(r(t) = 10 \sin 4t \) 输入信号作用下，系统的稳态输出 \(c(t) \)。
【解】系统的闭环传递函数为
\[\Phi(s) = \frac{1}{s + 2} \]

频率特性:
\[\Phi(j\omega) = \Phi(s)|_{s=j\omega} = \frac{1}{j\omega + 2} = \frac{2}{4 + \omega^2} - j\frac{-\omega}{4 + \omega^2} \]

幅频特性:
\[A(\omega) = |\Phi(\omega)| = \frac{1}{\sqrt{4 + \omega^2}} \]

相频特性:
\[\varphi(\omega) = \tan^{-1}\left(-\frac{\omega}{2}\right) \]

当 \(r(t) = 10\sin 4t \) 时, \(\omega = 4 \), 则
\[|\Phi(\omega)|_{\omega=4} = \frac{1}{\sqrt{4 + 4^2}} = \frac{1}{20} = 0.2236, \quad \varphi(\omega)|_{\omega=4} = \tan^{-1}\left(-\frac{4}{2}\right) = -63.43^\circ \]

则, 依据频率特性的定义, 系统的稳态输出为
\[c(t) = 0.2236 \times 10\sin(4t - 63.43^\circ) = 2.236\sin(4t - 63.43^\circ) \]

【例 5-2】已知控制系统的传递函数为
\[G(s) = \frac{12(s + 2)}{s^2 + 4s + 15} \]

【MATLAB 实现】

```matlab
clear all
clc
num=[12,24];den=[1,4,15];
G=tf(num,den);
X=[];Y=[];
w=logspace(-1,1);
[x,y,w]=bode(G);
%定义角频率的取值范围
%求取系统的幅值和相角
subplot(1,2,1);
plot(w,x(:));axis([0,10,0,0.3]);
%绘制幅频特性图
x=y(:);
%绘制相频特性图
subplot(1,2,2);
plot(w,y(:));axis([0,10,-80,40]);
xlabel('频率/(rad/s)');ylabel('幅值/dB');title('幅频特性');
grid
xtitle('频率/(rad/s)');ylabel('相位/度');title('相频特性');
grid
```

其幅频特性图和相频特性图如图 5-4 所示。
5.2 频率特性的图示

当系统的传递函数 $G(s)$ 比较复杂时，系统频率特性 $G(j\omega)$ 的解析表达式非常复杂。实际工程设计和分析中，常采用图形来描述系统的频率特性。常用的频率特性图形见表 5-1 所示。

表 5-1 常用的频率特性曲线及其坐标系类型

<table>
<thead>
<tr>
<th>序号</th>
<th>曲线名称</th>
<th>图形称谓</th>
<th>坐标系类型</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>幅频特性曲线</td>
<td>频率特性图</td>
<td>直角坐标系</td>
</tr>
<tr>
<td></td>
<td>相频特性曲线</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>幅相频率特性曲线</td>
<td>奈奎斯特图或极坐标图</td>
<td>极坐标</td>
</tr>
<tr>
<td>3</td>
<td>对数幅频特性曲线</td>
<td>伯德图或对数坐标图</td>
<td>半对数坐标</td>
</tr>
<tr>
<td></td>
<td>对数相频特性曲线</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>对数幅相频率特性曲线</td>
<td>尼柯尔斯图或对数幅相图</td>
<td>对数坐标</td>
</tr>
</tbody>
</table>

5.2.1 奈奎斯特图

奈奎斯特图 (Nyquist) 又称为幅相频率特性图，简称奈氏图。因为其坐标系是极坐标系，所以又称为极坐标图。

频率特性 $G(j\omega)$ 是复数，因此可把它看成复平面上的矢量。当频率 ω 为一确定值 ω_1 时，频率特性 $G(j\omega)$ 可用极坐标形式表示：

$$G(j\omega) = |G(j\omega)|e^{j\varphi(\omega)} \quad (5\cdot9)$$

幅值 $|G(j\omega)|$ 和相角 $\varphi(\omega)$ 都是频率的函数，当频率 ω 于 $0 \rightarrow \infty$ 范围内连续变化时，矢量 $G(j\omega)$ 的端点在复平面内也随之变化，形成的轨迹就是幅相频率特性曲线，曲线以 ω 为参变量。$G(j\omega)$ 在实轴和虚轴上的投影分别是 $G(j\omega)$ 的实部 $R(\omega)$ 和虚部 $I(\omega)$。
第 5 章 控制系统的频域分析法

如传递函数为 \(G(s) = \frac{\tau s + 1}{T s + 1} \), \(\tau > T \) 的奈氏图如图 5-5 所示。

![图 5-5 频率响应的奈氏图](image)

5.2.2 伯德图

伯德图（Bode）又称为对数频率特性图，在频率法中应用最为广泛。与奈奎斯特图相比较，伯德图更为科学。用伯德图不但计算简单，绘图容易，而且更能直观地体现时间常数等参数对系统性能的影响。

伯德图由两幅图组成，分别是对数幅频特性图和对数相频特性图。

\(G(j\omega) \) 对数幅值（即纵坐标）的标准表达式为

\[
L(\omega) = 20 \log |G(j\omega)| = 20 \log A(\omega)
\]

式中，采用的单位是分贝 (dB)。在对数表达式中，对数幅值曲线画在半对数坐标上，即频率采用对数频率刻度，幅值和相角则采用线性刻度。

【注意】

1. 对数分度与线性分度如图 5-6 所示。在线性分度中，当变量增大或减小 1 时，坐标间距离变化 1 个单位刻度；而在对数分度中，当变量增大或减小 10 倍（称为 10 倍频程 dec）时，坐标间距离变化 1 个单位长度。

![图 5-6 对数分度与线性分度](image)

2. 对数频率特性采用 \(\omega \) 的对数分度，实现了横坐标的非线性压缩，便于在较大频率范围反映频率特性的影响情况。
自动控制原理

3 对数幅频特性采用 $20\log A(\omega)$，则可将幅值的乘除运算化简为加减运算，可以大大简化曲线的绘制过程。

设对数分度中的单位长度为 L，ω 的某个十倍频程的左端点为 ω_0，则坐标点相对于左端点的距离为表 5-2 所示值乘以 L。

<table>
<thead>
<tr>
<th>ω/ω_0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log(\omega/\omega_0)$</td>
<td>0</td>
<td>0.301</td>
<td>0.477</td>
<td>0.602</td>
<td>0.699</td>
<td>0.788</td>
<td>0.845</td>
<td>0.903</td>
<td>0.954</td>
<td>1</td>
</tr>
</tbody>
</table>

图 5-7 是图 5-1 所示的 RC 网络的对数频率特性曲线。

5.2.3 尼柯尔斯图

对数幅相曲线又称为尼柯尔斯图。其特点是纵坐标为 $L(\omega)$，单位为分贝 (dB)，横坐标为 $\varphi(\omega)$，单位为度 (°)，均为线性分度，频率 ω 为参变量。如图 5-8 为图 5-1 RC 网络的尼柯尔斯曲线。

尼柯尔斯曲线对应的坐标系，可以根据系统开环和闭环的关系，绘制关于闭环幅频特性的等 M 簇线和闭环相频特性的等 φ 簇线，因此可以根据频域指标要求来校正网络，简化系统的设计过程。

5.3 典型环节的频率特性

控制系统从结构及原理上看，无论是机械、电子还是液压、光学，其数学模型都可以分解成几种典型环节，如比例环节、积分环节、惯性环节、微分环节、振荡环节等。下面具体介绍这些典型环节的幅相频率特性和对数频率特性。
5.3.1 比例环节的频率特性

1. 解析式

比例环节的传递函数为

\[G(s) = \frac{C(s)}{R(s)} = K \] \hspace{1cm} (5-11)

令 \(s = j\omega \) 并代入式 (5-11)，可得频率特性：

\[G(j\omega) = K = K + j0 = Ke^{j\omega} \] \hspace{1cm} (5-12)

幅频特性为

\[A(\omega) = |G(j\omega)| = K \] \hspace{1cm} (5-13)

相频特性为

\[\phi(\omega) = 0^\circ \] \hspace{1cm} (5-14)

2. 奈氏图

根据式 (5-12)，比例环节的幅频特性及相频特性均与频率 \(\omega \) 无关，表示在直角坐标系中为实轴上的“\(K \)”点，如图 5-9 所示。

3. 伯德图

比例环节的对数幅频特性为

\[L(\omega) = 20\lg A(\omega) = 20\lg K \] \hspace{1cm} (5-15)

表示在半对数坐标系中为一条平行于频率轴（横坐标）的直线，它与频率轴的距离为“\(20\lg K \)”。

当 \(K > 1 \) 时，在横轴上方； \(K < 1 \) 时，在横轴下方。

比例环节的对数相频特性为

\[\phi(\omega) = 0^\circ \] \hspace{1cm} (5-16)

在半对数坐标系中，相频特性曲线是零度的水平直线，即与横轴重合。

比例环节的伯德图如图 5-10 所示。
5.3.2 积分环节的频率特性

1. 解析式

积分环节的传递函数为

$$ G(s) = \frac{C(s)}{R(s)} = \frac{1}{s} \quad (5-17) $$

令 $s = j\omega$ 并代入式 (5-17)，可得频率特性:

$$ G(j\omega) = \frac{1}{j\omega} = 0 - \frac{1}{\omega}e^{-j\frac{\pi}{2}} = \frac{1}{\omega} e^{-j90^\circ} \quad (5-18) $$

幅频特性为

$$ A(\omega) = |G(j\omega)| = \frac{1}{\omega} \quad (5-19) $$

相频特性为

$$ \phi(\omega) = -\frac{\pi}{2} = -90^\circ \quad (5-20) $$

2. 奈奎斯特图

当频率 ω 从 $0 \to \infty$ 时，由式 (5-18) 知，实部为零，虚部由负无穷大变化为零。特性曲线由虚轴的 $-\infty$ 趋向原点，如图 5-11 所示。

3. 伯德图

积分环节的对数幅频特性为

$$ L(\omega) = 20\log A(\omega) = 20\log \frac{1}{\omega} = -20\log \omega \quad (5-21) $$

由上式可知，其对数幅频特性曲线为过横轴 $\omega = 1$ 处，斜率为 -20dB/dec 的一条直线。

对数相频特性为

$$ \phi(\omega) = -\frac{\pi}{2} = -90^\circ \quad (5-22) $$

它与频率无关，等于恒值 -90°，且与横轴平行的直线。

积分环节的伯德图如图 5-12 所示。如果传递函数中含有 n 个积分环节串联，那么此时的对
数幅频特性为

\[L(\omega) = 20 \log A(\omega) = -\nu 20 \log \omega \] \hspace{1cm} (5-23)

这是一条在 \(\omega = 1 \) 处通过横轴、斜率为 \(\nu \times (-20 \text{dB} / \text{dec}) \) 的直线。对数相频特性为与频率 \(\omega \) 无关的常值 \(-\nu \times \frac{\pi}{2} \)。

5.3.3 惯性环节的频率特性

1. 解析式

惯性环节的传递函数为

\[G(s)= \frac{C(s)}{R(s)} = \frac{1}{Ts+1} \] \hspace{1cm} (5-24)

令 \(s = j\omega \) 代入式 (5-24)，可得频率特性:

\[G(j\omega) = \frac{1}{j\omega T+1} = \frac{1}{T^2\omega^2+1} - j\frac{T\omega}{T^2\omega^2+1} = \frac{1}{\sqrt{T^2\omega^2+1}} e^{-j\tan^{-1}T\omega} \] \hspace{1cm} (5-25)

幅频特性为

\[A(\omega) = |G(j\omega)| = \frac{1}{\sqrt{T^2\omega^2+1}} \] \hspace{1cm} (5-26)

相频特性为

\[\varphi(\omega) = -\tan^{-1}T\omega \] \hspace{1cm} (5-27)

2. 奈氏图

由式 (5-25) 可知，若给出一个频率值 \(\omega_a \)，则可计算出对应的实部和虚部或幅值和相角，并可在直角坐标系中描出相应的一点。当 \(\omega \) 在 \(0 \to \infty \) 范围内取若干个数值时，可以计算出对应的一组数值。这样可以绘制出幅相频率特性曲线，如图 5-13 所示。容易证明此图形为半个圆。

3. 伯德图

惯性环节的对数幅频特性为

\[L(\omega) = 20 \log A(\omega) = 20 \log \frac{1}{\sqrt{T^2\omega^2+1}} = -20 \log \sqrt{T^2\omega^2+1} \] \hspace{1cm} (5-28)

给出不同的频率 \(\omega \)，按上式可计算出相应的 \(L(\omega) \) 值，从而在半对数坐标系中绘制出对数幅频特性曲线。

在控制系统实际设计中，常采用分段直线近似来表示对数幅频特性曲线，方法如下:

（1）低频段。在 \(T\omega << 1 \)，或 \(\omega << \frac{1}{T} \) 的区段，可以近似认为 \((T\omega)^2 \approx 0\) 于是，式 (5-28) 变为 \(L_a(\omega) \approx -20 \log \sqrt{1} = 0 \text{dB} \)，故在低频段，对数幅频特性曲线是与横轴重合的直线。

（2）高频段。在 \(T\omega >> 1 \)，或 \(\omega >> \frac{1}{T} \) 的区段，可以近似认为 \(L_a(\omega) \approx -20 \log T\omega \)，这是一条斜
率为 -20dB/dec，与横轴交于 $\omega = \frac{1}{T}$ 的直线。

上述两直线构成了惯性环节对数幅频特性曲线的渐近线，又称为 “渐近对数幅频特性”。两条直线的交点 $\omega_0 = \frac{1}{T}$，称为 “交接频率” 或 “转折频率”。在绘制渐近对数幅频特性时，它是一个非常重要的参数。

渐近特性与精确特性相比，存在误差。其误差表达式为

$$
\Delta L(\omega) = \begin{cases}
-20 \log_2 \sqrt{1 + T^2 \omega^2}, & \omega \leq \frac{1}{T} \\
-20 \log_2 \sqrt{1 + T^2 \omega^2 + 20 \log T \omega}, & \omega \geq \frac{1}{T}
\end{cases}
$$

误差最大值出现在交接频率 $\omega_0 = \frac{1}{T}$ 处，其数值为

$$
\Delta L(\omega) = -20 \log_2 \sqrt{2} = -3.01 \text{dB}
$$

如图 5-14 所示为惯性环节的对数幅频特性曲线。一般情况下，工程上采用渐近特性。若要求曲线精度提高，则可先绘制出渐近特性，然后按照式 (5-29) 在 $\omega_0 = \frac{1}{T}$ 附近进行修正。

惯性环节的对数相频特性为

$$
\varphi(\omega) = -\tan^{-1} T \omega
$$

(5-30)

从式 (5-30) 可知，在频率 ω 为零时， $\varphi(0) = 0^\circ$；在交接频率 $\omega_0 = \frac{1}{T}$ 处， $\varphi\left(\frac{1}{T}\right) = -45^\circ$；当频率趋于无穷大时，相位将趋于 -90°。由于惯性环节的相位与频率呈反正切函数关系，因此相频特性将对于 $\omega_0 = \frac{1}{T}$ 时的 -45° 这一点斜对称。因此，在绘制相频特性曲线时，依据式 (5-30) 选
第 5 章 控制系统的频域分析法

择若干频率值，求出相应的相位值在对数相频图中标出，然后用一条光滑的曲线连接，便绘制定出其相频特性曲线图，如图 5-14 所示。

5.3.4 振荡环节的频率特性

1. 解析式

振荡环节的传递函数为
\[G(s) = \frac{C(s)}{R(s)} = \frac{1}{T^2 s^2 + 2\zeta T s + 1}, \quad 0 < \zeta < 1 \] （5-31）

令 \(s = j\omega \) 并代入式（5-31），频率特性为

\[
G(j\omega) = \frac{1}{(1-T^2\omega^2) + j2\zeta T \omega} = \frac{(1-T^2\omega^2) - j2\zeta T \omega}{(1-T^2\omega^2)^2 + (2\zeta T \omega)^2} = \frac{1}{\sqrt{(1-T^2\omega^2)^2 + (2\zeta T \omega)^2}} e^{-j\tan^{-1}\frac{2\zeta T \omega}{1-T^2\omega^2}}
\] （5-32）

幅频特性为

\[
A(\omega) = |G(j\omega)| = \frac{1}{\sqrt{(1-T^2\omega^2)^2 + (2\zeta T \omega)^2}}
\] （5-33）

相频特性为

\[
\varphi(\omega) = -\tan^{-1}\frac{2\zeta T \omega}{1-T^2\omega^2}
\] （5-34）

2. 奈氏图

根据式（5-32），以 \(\zeta \) 为参变量，计算不同频率 \(\omega \) 时的实部和虚部或幅值和相位，可在复平面上绘制出振荡环节的幅相频率特性曲线。曲线形状与 \(\zeta \) 值有关，如图 5-15 所示。

图 5-15 振荡环节的奈氏图

振荡环节的一个重要特点是，在某个频率 \(\omega = \omega_p \) 时产生谐振。谐振时，幅频特性出现峰值。下面讨论如何计算谐振频率 \(\omega_p \) 和谐振峰值 \(A(\omega_p) \)（也记作 \(M_p \)）。

式（5-33）对 \(\omega \) 求导并令其等于零，可求得幅频特性出现峰值的频率，即谐振频率为

\[
\omega_p = \frac{1}{T} \sqrt{1 - 2\zeta^2}
\] （5-35）
显然，ω_p 与阻尼比 ζ 有关。当 $\zeta = \frac{\sqrt{2}}{2}$ 时，$\omega_p = 0$；当 $\zeta > \frac{\sqrt{2}}{2}$ 时，ω_p 为虚数，说明不存在谐振峰值。当 $\zeta < \frac{\sqrt{2}}{2}$ 时，将式 (5-35) 代入式 (5-33)，可得幅频特性的谐振峰值为

$$A(\omega_p) = M_p = \frac{1}{2\zeta \sqrt{1 - \zeta^2}}$$ \hspace{1cm} (5-36)

3. 伯德图

振荡环节的对数幅频特性为

$$L(\omega) = 20 \log A(\omega) = -20 \log \sqrt{\left(1 - T^2 \omega^2 \right)^2 + (2\zeta T \omega)^2}$$ \hspace{1cm} (5-37)

在低频段，即 $T \omega << 1$ 时，得

$$L_1(\omega) = 0$$ \hspace{1cm} (5-38)

它是一条与横轴重合的直线。

在高频段，即 $T \omega >> 1$ 时，得

$$L_2(\omega) \approx -20 \log (T \omega)^2 = -40 \log (T \omega)$$ \hspace{1cm} (5-39)

它是一条斜率为 -40dB/dec、交横轴于 $\frac{1}{T}$ 的直线。

上述两条直线是振荡环节对数幅频特性的渐近线。由此两直线衔接起来所构成的折线称为振荡环节的渐近对数幅频特性，两直线的交点频率 $\omega_n = \frac{1}{T}$，称为振荡环节的交接频率或转折频率。

振荡环节的渐近对数频率特性，并没有考虑阻尼比 ζ 的影响。实际上，精确特性是和阻尼比 ζ 有关的。根据式 (5-37) 绘制的精确对数幅频特性曲线及其渐近线如图 5-16 所示。由图可见，渐近线与精确对数幅频特性曲线存在误差。

![图 5-16 振荡环节的伯德图](image)
误差计算公式如下:

$$
\Delta L_1(\omega) = -20 \log \sqrt{(1-T^2\omega^2)^2 + (2\zeta T\omega)^2}, \quad \omega \leq \frac{1}{T}
$$

(5-40)

$$
\Delta L_2(\omega) = -20 \log \sqrt{(1-T^2\omega^2)^2 + (2\zeta T\omega)^2} + 20 \log T^2 \omega^2, \quad \omega \geq \frac{1}{T}
$$

(5-41)

从图中可知，当 $0.4 < \zeta < 0.7$ 时，$\Delta L(\omega) < 4 \text{dB}$；当 ζ 在此范围之外时，误差值增加。在工程上，当满足 $0.4 < \zeta < 0.7$ 时，可使用渐近对数幅频特性曲线；在此范围之外，应使用精确对数幅频特性曲线。精确对数幅频特性曲线可在渐近线的基础上，用式 (5-40) 和式 (5-41) 进行修正或应用式 (5-37) 直接计算。

振荡环节的对数相频特性曲线可按式 (5-34) 逐点计算并绘制，如图 5-16 所示。其特点是，当 $\omega \to 0$ 时，$\phi \to 0^\circ$；当 $\omega = \omega_0 = \frac{1}{T}$ 时，$\phi = -90^\circ$；而当 $\omega \to \infty$ 时，$\phi \to -180^\circ$。除此以外，相频特性曲线也随阻尼比 ζ 大小而变化。

5.3.5 微分环节的频率特性

1. 解析式

微分环节通常包括纯微分环节、一阶微分环节和二阶微分环节。它们的传递函数分别为

$$
G_i(s) = s
$$

$$
G_2(s) = \tau s + 1
$$

$$
G_3(s) = \tau^2 s^2 + 2\zeta \tau s + 1
$$

令 $s = j\omega$ 并代入式 (5-42)，频率特性分别为

$$
G_i(j\omega) = j\omega = \omega e^{j90^\circ}
$$

(5-43)

$$
G_2(j\omega) = j\tau \omega + 1 = \sqrt{\tau^2 \omega^2 + 1} e^{j\tan^{-1} \omega}
$$

(5-44)

$$
G_3(j\omega) = (1 - \tau^2 \omega^2) + j2\zeta \tau \omega = \sqrt{(1 - \tau^2 \omega^2)^2 + (2\zeta \tau \omega)^2} e^{j\tan^{-1} \frac{2\zeta \tau \omega}{1 - \tau^2 \omega^2}}
$$

(5-45)

2. 奈氏图

纯微分环节的幅相特性，由式 (5-43) 可知，实部为零，与频率 ω 无关；虚部随 ω 增大而增大。因此，在 ω 从 $0 \to \infty$ 变化过程中，其幅相频率特性是正虚轴，如图 5-17 (a) 所示。

一阶微分环节的幅相频率特性，由式 (5-44) 可知，实部为 “1”，与频率 ω 无关；虚部随 ω 增大而增大。因此，在 ω 从 $0 \to \infty$ 变化过程中，其幅相频率特性是正值的上半虚轴，如图 5-17 (b) 所示。

二阶微分环节的幅相频率特性，由式 (5-45) 绘出，如图 5-17 (c) 所示。

3. 伯德图

从传递函数形式可知，纯微分环节、一阶微分环节、二阶微分环节的幅频特性和相频特性分别是积分环节、惯性环节和振荡环节的倒数。因此，在对数坐标中，纯微分环节和积分环节的对数频率特性曲线相对于频率轴（横轴）互为镜像。如图 5-18 是纯微分环节的对数频率特
性曲线：一阶微分环节和惯性环节的对数频率特性曲线相对于频率轴互为镜像。如图 5-19 所示是一阶微分环节的对数频率特性曲线；同理二阶微分环节和振荡环节的对数频率特性曲线也相对于频率轴互为镜像。如图 5-20 所示为二阶微分环节的对数频率特性曲线。

图 5-17 微分环节的奈氏图

图 5-18 纯微分环节伯德图
图 5-19 一阶微分环节伯德图
图 5-20 二阶微分环节伯德图

5.3.6 延迟环节的频率特性

1. 解析式

延迟环节的传递函数为

\[G(s) = \frac{C(s)}{R(s)} = e^{-\tau s} \quad (5-46) \]

以 \(s = j\omega \) 并代入式 (5-46)，频率特性为

\[G(j\omega) = e^{-j\omega \tau} \quad (5-47) \]

幅频特性为

\[A(\omega) = 1 \quad (5-48) \]

相频特性为

\[\varphi(\omega) = -\tau \omega \quad (5-49) \]

2. 奈氏图

延迟环节的幅相频率特性是以坐标原点为圆心、半径为“1”的圆，如图 5-21 所示。
3. 伯德图

延迟环节的对数频特性与对数相频特性分别为

\[
L(\omega) = 20 \log A(\omega) = 0 \text{ (dB)}
\]

\[
\varphi(\omega) = -\tau \omega = -\frac{180}{\pi} \tau \omega
\]

根据式（5-50）和式（5-51）绘制的延迟环节对数频率特性曲线如图 5-22 所示。由图可看出，延迟环节的对数频特性曲线是与横轴重合的直线，对数相频特性曲线随 \(\omega \) 增加，滞后也增加。

典型环节的幅相频率特性与对数频率特性总结如表 5-3 所示。

<table>
<thead>
<tr>
<th>序号</th>
<th>环节名称</th>
<th>传递函数 (G(s))</th>
<th>幅相频率特性 (G(j\omega))</th>
<th>对数频特性 (dB)</th>
<th>对数相频特性 (\varphi(\omega))</th>
<th>转折频率 (\omega_n)</th>
<th>斜率 (dB/dec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>比例环节</td>
<td>(K)</td>
<td>(Ke^{\theta\omega})</td>
<td>20lg (K)</td>
<td>0°</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>积分环节</td>
<td>(\frac{1}{s})</td>
<td>(\frac{1}{\omega} e^{-\theta\omega})</td>
<td>-20lg (\omega)</td>
<td>-90°</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>惯性环节</td>
<td>(\frac{1}{1+Ts})</td>
<td>(\frac{1}{\sqrt{1+T^2\omega^2}} e^{-\theta\omega})</td>
<td>-20lg (\sqrt{1+T^2\omega^2})</td>
<td>-tan^{-1} (T\omega)</td>
<td>(\frac{1}{T})</td>
<td>-20</td>
</tr>
<tr>
<td>4</td>
<td>振荡环节</td>
<td>(\frac{1}{Ts^2+2\xi T+1})</td>
<td>(\frac{1}{\sqrt{(1-T^2\omega^2)+(2\xi T\omega)^2}} e^{-\theta\omega})</td>
<td>-20lg (\sqrt{(1-T^2\omega^2)+(2\xi T\omega)^2})</td>
<td>-tan^{-1} (2\xi T\omega)</td>
<td>(\frac{1}{T})</td>
<td>-40</td>
</tr>
<tr>
<td>5</td>
<td>纯微 分环节</td>
<td>(s)</td>
<td>(\omega e^{\theta\omega})</td>
<td>20lg (\omega)</td>
<td>90°</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>一阶微 分环节</td>
<td>(1+\tau s)</td>
<td>(\sqrt{1+\tau^2} e^{-\tau\omega})</td>
<td>20lg (\sqrt{1+\tau^2})</td>
<td>tan^{-1} (\tau\omega)</td>
<td>(\frac{1}{\tau})</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>二阶微分环节</td>
<td>(1+2\xi \tau s+\tau^2 s^2)</td>
<td>(\sqrt{(1-\tau^2\omega^2)+(2\xi T\omega)^2} e^{-\tau\omega})</td>
<td>20lg (\sqrt{(1-\tau^2\omega^2)+(2\xi T\omega)^2})</td>
<td>tan^{-1} (2\xi T\omega)</td>
<td>(\frac{1}{\tau})</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>延时环节</td>
<td>(e^{-\tau})</td>
<td>(e^{-\theta\omega})</td>
<td>0</td>
<td>-90°</td>
<td>-100</td>
<td>-40</td>
</tr>
</tbody>
</table>
5.4 开环系统频率特性图绘制

5.4.1 开环系统伯德图的绘制

前面掌握了典型环节对数频率特性曲线（伯德图）的绘制方法，接下来就可以很方便地绘制控制系统开环对数频率特性曲线。系统开环传递函数可以分解为多个典型环节，设系统开环频率特性为

\[G_k(j\omega) = G_1(j\omega)G_2(j\omega)\cdots G_n(j\omega) = \prod_{i=1}^{n} G_i(j\omega) \]

式中，\(G_i(j\omega) \)为典型环节的频率特性，\(i = 1, 2, \ldots, n \)。即

\[
|G_k(j\omega)|e^{j\angle G_k(j\omega)} = |G_1(j\omega)|e^{j\angle G_1(j\omega)}|G_2(j\omega)|e^{j\angle G_2(j\omega)}\cdots |G_n(j\omega)|e^{j\angle G_n(j\omega)}
\]

\[
= \prod_{i=1}^{n} |G_i(j\omega)| \cdot e^{\sum_{i=1}^{n} \angle G_i(j\omega)}
\]

由此可得，开环控制系统的幅频特性和相频特性分别为

\[
A(\omega) = |G_k(j\omega)| = \prod_{i=1}^{n} |G_i(j\omega)|
\]

\[
\phi(\omega) = \angle G_k(j\omega) = \sum_{i=1}^{n} \angle G_i(j\omega)
\]

开环对数幅频特性和开环对数相频特性分别为

\[
L(\omega) = 20\log|G_k(j\omega)| = 20\log\prod_{i=1}^{n} |G_i(j\omega)| = \sum_{i=1}^{n} [20\log|G_i(j\omega)|] \quad (5-52)
\]

\[
\phi(\omega) = \angle G_k(j\omega) = \sum_{i=1}^{n} \angle G_i(j\omega) \quad (5-53)
\]

式（5-52）和式（5-53）表明，由\(n \)个典型环节串联组成的控制系统的开环对数幅频特性曲线和开环对数相频特性曲线，可由这\(n \)个典型环节对应的曲线叠加而成。

因此，在绘制伯德图时，不必画出所有典型环节的折线然后叠加，只要抓住伯德图的特性，就可以大大简化曲线绘制的难度。叠加方法有如下特点：

（1）各典型环节的伯德图的渐近线均为直线或折线，由这些典型环节所组成的开环系统的伯德图，就是这些典型环节伯德图的叠加，因而叠加的结果仍为直线或折线。

（2）低频段及其延长线的渐近线为直线，其斜率由系统所含积分环节的数量（或称系统型别）\(\nu \)决定。斜率为\(\nu \times (-20) \text{dB/dec} \)，该渐近线或延长线在\(\omega = 1 \)处的值为\(\nu \)倍，最左端直线或延长线和0分贝（横坐标轴）交点的角频率恰好为\(\sqrt{\nu} \)。

（3）在转折频率处，\(L(\omega) \)曲线的斜率会发生变化，改变多少取决于典型环节的类型。

掌握了以上特点，就可以根据控制系统开环传递函数直接绘制开环系统对数幅频特性曲线，具体步骤如下：

（1）将系统开环传递函数分解为典型环节的乘积。

（2）确定各典型环节的转折频率，并按从小到大排列在横轴上。
（3）计算低频段渐近线或延长线的斜率及其在 $\omega = 1$ 处的分贝 $20\lg K$，绘制低频段渐近线至第一个转折点频率处的曲线。

（4）折线由低频向高频延伸，每到一个转折点频率，斜率就根据具体环节相应地改变。改变时按照如下规则进行：

① 通过惯性环节的转折频率，斜率增加 -20dB/dec。
② 通过二阶振荡环节的转折频率，斜率增加 -40dB/dec。
③ 通过一阶微分环节的转折频率，斜率增加 20dB/dec。

（5）若需对折线进行误差修正，可以得到更为精确的对数幅频特性曲线，通常只要修正各转折点处及转折频率两倍频程和 0.5 倍频处的幅值就可以。对于惯性环节与一阶微分环节，在转折频率处的修正值为 $\pm 3\text{dB}$。在转折频率两倍频程和 0.5 倍频处的修正值为 $\pm 1\text{dB}$。而振荡环节则照此执行即可。

（6）对于对数相频特性曲线，确定其渐近线包括两方面：

① 低频段由积分环节的个数 ν 来决定相位，即 $\varphi(\omega) = -90^\circ \times \nu$。
② 中高频段则根据每个典型环节的情况，对转折频率后的相位进行增减。

【例 5-3】某系统的开环传递函数为

$$G_K(s) = \frac{10}{\left(\frac{1}{4}s + 1\right)\left(\frac{1}{4}s^2 + \frac{2}{5}s + 1\right)}$$

试绘制开环对数幅频特性和对数相频特性曲线图，即伯德图。

【解】题中的开环传递函数可分解为

$$G_K(s) = 10 \cdot \frac{1}{\frac{1}{4}s + 1} \cdot \frac{1}{\left(\frac{1}{4}s^2 + \frac{2}{5}s + 1\right)}$$

从而可知系统由三个典型环节组成。

比例环节：$G_1(s) = K = 10$；

惯性环节：$G_2(s) = \frac{1}{T^2s + 0.25s + 1}$，交界频率 $\omega_1 = \frac{1}{T} = \frac{1}{0.25} = 4$；

二阶振荡环节：$G_3(s) = \frac{1}{T^2s + 0.4s + 1}$，交界频率 $\omega_2 = \frac{1}{T} = \frac{1}{\sqrt{0.25}} = 2$。

$K = 10$，$20\lg K = 20\text{dB}$。在 $\omega = 1$ 处找出纵坐标等于 20dB 的点。因为没有积分或纯微分环节，$\nu = 0$，所以过点作一条水平线，直到第一个交界频率“2”的地方。由于“2”是振荡环节的交界频率，因此，在 $\omega = 2$ 以后，渐近线的斜率变为 -40dB/dec 的直线。当 $\omega \geq 4$ 时，渐近线的斜率又增加 -20dB/dec，即变为 -60dB/dec。绘制完毕。

若要得到较精确的曲线，对上面绘制的渐近线进行修正。在第一个交界频率点附近，按阻尼比 $\zeta = \frac{0.4}{2\times0.5} = 0.4$ 的修正值修正。在第二个交界频率点附近，按惯性环节的修正值修正。对数相频特性表达式为

$$\varphi(\omega) = -\tan^{-1} 0.25\omega - \tan^{-1} \frac{0.4\omega}{1 - 0.25\omega^2}.$$
数据列表如下:

<table>
<thead>
<tr>
<th>ω</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>10</th>
<th>...</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ(ω)</td>
<td>0°</td>
<td>-14°</td>
<td>-42°</td>
<td>-86°</td>
<td>-117°</td>
<td>-170°</td>
<td>-197°</td>
<td>-220°</td>
<td>-239°</td>
<td>...</td>
<td>170°</td>
</tr>
</tbody>
</table>

系统的伯德图（MATLAB 实现）如图 5-23 所示。

【MATLAB 实现】

```matlab
clear all
clc
G=tf(10,[conv([0.25,1],[0.25,0.4,1])]);
figure(1)
bode(G)
%绘制伯德图
title('对数幅频特性')
grid
figure(2)
nyquist(G)
%绘制奈奎斯特图
title('幅相特性')
grid
```

【例 5-4】已知系统的开环传递函数为

$$G_K(s) = \frac{5(0.1s + 1)}{s(0.5s + 1)\left(\frac{1}{2500}s^2 + \frac{6}{50}s + 1\right)}$$

试绘制开环控制系统的对数幅频特性曲线图。

【解】（1）拆解传递函数。

$$G_K(s) = 5 \times \frac{1}{s} \times \frac{1}{0.5s + 1} \times (0.1s + 1) \times \frac{1}{\frac{1}{2500}s^2 + \frac{6}{50}s + 1}$$
（2）确定转折频率。
惯性环节：\(\omega_n = 2 \)
一阶微分环节：\(\omega_n = 10 \)
振荡环节：\(\omega_n = 50 \)
（3）低频段。
因为只有一个积分环节，所以低频段的斜率为\(-20\text{dB/dec}\)。比例环节\(K = 5 \)，由此可知\(\omega = 1 \)处的分贝值为\(20 \log K = 20 \log 5 = 14\text{dB} \)。
（4）斜率确定。
由低频段向高频段延伸，依此确定斜率变化。
起始\(\omega_n \rightarrow -20\text{dB/dec} \)；
\(\omega_n \rightarrow \omega_n \rightarrow -40\text{dB/dec} \)；
\(\omega_n \rightarrow \omega_n \rightarrow -20\text{dB/dec} \)；
\(\omega_n \rightarrow \infty \rightarrow -60\text{dB/dec} \)。
根据以上步骤，可绘制伯德图的渐近线。读者可自行绘制渐近线，如图5-24所示为MATLAB实现的伯德图。

【MATLAB 实现】

```matlab
G1=tf(5,[0,1]);G2=tf(1,[1,0]);G3=tf(1,[0.5,1]);G4=tf([0.1,1],1);G5=tf(1,[1/2500,6/50,1]);
G=series(series(series(series(G1,G2),G3),G4),G5);
figure(1);bode(G);title('对数幅频和对数相频特性');grid
figure(2);bodemag(G);title('对数幅频特性');grid
```

图5-24 例5-4系统的伯德图
【例 5-5】 已知控制系统的开环传递函数为
\[G(s)H(s) = \frac{3(s^3 + 3s^2 + 3s + 1)(s^3 + s^2)}{(s^2 + s - 6)(s^2 + 2s)(s^2 + s + 1)} \]

试用 MATLAB 绘制对数频率特性图。

【MATLAB 实现】
```matlab
G=tf(3*conv([1,3,3,1],[1,1,0,0]),conv([1,1,-6],conv([1,2,0],[1,1,1])));
bode(G);title('伯德图');grid
```

例 5-5 系统的伯德图如图 5-25 所示。

5.4.2 最小相位系统和非最小相位系统

根据零点、极点的不同，控制系统可以分成两类：
(1) 最小相位系统：系统传递函数 \(G(s) \) 的所有零点、极点均位于 \(S \) 左半平面。

(2) 非最小相位系统：系统传递函数 \(G(s) \) 有开环零点或开环极点位于 \(S \) 右半平面。

最小相位的概念源于网络理论。在具有相同幅频特性的一些环节中，其相位最小的环节称为最小相位系统，相位大于最小相位的环节称为非最小相位环节。最小相位系统中的各典型环节均为最小相位环节。

设两个系统的开环传递函数为
\[G_{1k}(s) = \frac{0.2s + 1}{0.5s + 1}, \quad G_{2k}(s) = \frac{-0.2s + 1}{0.5s + 1} \]

则两开环控制系统的对数幅频特性和对数相频特性为
\[L_1(\omega) = L_2(\omega) = \sqrt{\frac{1 + (\tau\omega)^2}{1 + (T\omega)^2}} \]
\[\phi_1(\omega) = \tan^{-1} \tau\omega - \tan^{-1} T\omega \]
\[\phi_2(\omega) = -\tan^{-1} \tau\omega - \tan^{-1} T\omega \]
可见，这两个系统的开环对数幅频特性相同，而对数相频特性不同。其伯德图如图 5-26 所示。由于 $G_{2K}(s)$ 的零点位于 S 右半平面，产生了附加的相位后移，因而其相位变化范围较大，在 $0°~180°$，为非最小相位系统；而 $G_{1K}(s)$ 为最小相位系统，相位变化范围最小，为 $0°~90°$。

【注意】
① 最小相位系统的对数幅频特性和对数相频特性是一一对应的，知道对数幅频特性就可以得到系统的对数相频特性，且两者的变化趋势相同。
② 对数幅频特性低频渐近线的斜率为 $\nu(-20\text{dB/dec})$ 的斜线，对数相频特性为 $\varphi(\omega) = \nu(-90°)$，可见，对数频率特性与积分环节的个数 ν 有关。
③ 在高频段 $\omega \to \infty$ 时，由于 $n > m$，其渐近线斜率为 $(n-m)(-20\text{dB/dec})$，对数相频特性为 $\varphi(\omega) = (n-m)(-90°)$，高频段的对数幅频特性与对数相频特性均与 $n-m$ 有关。

5.5 频率域稳定性分析

稳定性是控制系统在受到外界扰动后，原有平衡状态被破坏，系统自身能恢复到原有平衡状态的能力。

控制系统稳定的充分必要条件是闭环系统特征根都具有负实部。在时域分析法中，判断特征根是否具有负实部可采用两种方法，即求出全部根或劳斯判据。这两种方法都不便于研究系统参数、结构等对稳定性的影响，且不能利用开环传递函数的特性来分析。

奈奎斯特稳定性判据（简称奈氏判据）是利用复变函数的幅角原理，根据系统开环频率特性判别闭环系统稳定性的准则，该准则称为频率法的稳定性判据。奈氏判据的严格推导，要用到复变函数理论，这里仅介绍其基本思想、准则的内容及其具体应用。
5.5.1 奈奎斯特稳定性判据

奈奎斯特稳定性判据可以根据开环系统频率特性曲线，确定闭环系统的稳定性。如图 5-27 所示的闭环控制系统，其中:

图 5-27 典型的闭环控制系统

开环传递函数为

\[G_K(s) = G(s)H(s) = \frac{N(s)}{D(s)} \] (5-54)

闭环传递函数为

\[\Phi(s) = \frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)} = \frac{D(s)G(s)}{D(s) + N(s)} \] (5-55)

在式 (5-54) 和式 (5-55) 中，\(D(s) \) 和 \(D(s) + N(s) \) 分别为开环和闭环控制系统的特征多项式。把这两个多项式相比，用 \(F(s) \) 表示，并称之为辅助方程，即

\[F(s) = \frac{D(s) + N(s)}{D(s)} = 1 + \frac{N(s)}{D(s)} \] (5-56)

考虑到实际控制系统，其开环传递函数分母多项式 \(D(s) \) 的阶次 \(n \) 大于或等于分子多项式 \(N(s) \) 的阶次 \(m \)，即 \(n \geq m \)，故 \(F(s) \) 的分子和分母两个多项式的最高阶次必然相同，都等于 \(n \)。

设 \(F(s) \) 的零点为 \(-z_i (i = 1, 2, \cdots, n)\)，极点为 \(-p_j (j = 1, 2, \cdots, n)\)，则辅助方程 \(F(s) \) 用零、极点形式表示时，有

\[F(s) = \frac{D(s) + N(s)}{D(s)} = \frac{(s + z_1)(s + z_2)\cdots(s + z_n)}{(s + p_1)(s + p_2)\cdots(s + p_n)} \] (5-57)

由式 (5-56) 还可以得到辅助方程 \(F(s) \) 与开环传递函数 \(G_K(s) \) 之间的关系:

\[F(s) = \frac{D(s) + N(s)}{D(s)} = 1 + \frac{N(s)}{D(s)} = 1 + G(s)H(s) = 1 + G_K(s) \] (5-58)

【注意】

① \(F(s) \) 的零点就是闭环系统的极点。
② \(F(s) \) 的极点就是开环系统的极点。
③ \(F(s) \) 的零点、极点的数目相等。
④ \(F(s) \) 与开环传递函数 \(G_K(s) \) 只差一个常数 “1”，两者之间的几何关系示意图如图 5-28 所示。
第 5 章 控制系统的频域分析法

图 5-28 辅助方程与开环传递函数间的几何关系

1. 幅角原理

把式 (5-57) 等号两边改写成模和幅角的形式，可得

$$ F(s) = |F| \angle F(s) = \prod_{i=1}^{n} \left| s + z_i \right| \sum_{i=1}^{n} \angle (s + z_i) - \sum_{j=1}^{m} \angle (s + p_j) $$ \hspace{1cm} (5-59)

比较上式两边的幅角，有

$$ \angle F(s) = \sum_{i=1}^{n} \angle (s + z_i) - \sum_{j=1}^{m} \angle (s + p_j) $$ \hspace{1cm} (5-60)

式中，s 是复数，$F(s)$ 是复变函数，它们分别可用复平面上的矢量来表示，其所对应的复平面分别称 S 平面和 F 平面。由复变函数理论可知，若在 S 平面上选一点（设为 a），通过复变函数 $F(s)$ 的映射关系，可在 F 平面上找到相对应的一点（设为 a'，并称 a' 为 a 的映像）；同理，对于 S 平面上任一条不通过 $F(s)$ 任何奇异点的封闭曲面 Γ_s，也可以在 F 平面上找到一条与 Γ_s 相对应的封闭曲面 Γ_f（把 Γ_f 称为 Γ_s 的映像），并有如下幅角原理。

幅角原理：若封闭曲线 Γ_f 内有 Z 个 $F(s)$ 零点和 P 个 $F(s)$ 的极点，则曲线 Γ_f 上的一点 s 依逆时针转一圈时，在 F 平面上，封闭曲线 Γ_f 绕原点反时针转过的圈数 N 为 P 和 Z 之差，即

$$ N = P - Z $$ \hspace{1cm} (5-61)

式中，N 若为负，则表示 Γ_f 曲线绕原点顺时针转过的圈数。

因为幅角原理证明步骤繁琐，所示下面只对它作简单解释。

在 S 平面上取一条闭合路径 Γ_s，且 Γ_s 上没有 $F(s)$ 的零点和极点，对于 Γ_s 上的 s 值，$F(s)$ 为单值有理函数。

设 $-Z_1$ 在 Γ_s 外，如图 5-29 所示，则当 s 从 S_1 点顺时针沿着 Γ_s 绕一圈回到 S_1 时，矢量 $s + Z_1$ 的幅角变化为零，即

$$ \Delta \angle (s + Z_1) = 0^\circ $$

实际上，所有在 Γ_s 外的零点和极点，当 s 沿 Γ_s 顺时针绕一圈时，它们的幅角变化均为零，对 $\angle F(s)$ 的幅角没有影响。

设 $-Z_2$ 在 Γ_s 内，当 s 沿 Γ_s 顺时针绕一圈回到 S_1 位置时，矢量 $s + Z_2$ 的角度变化按照复变函数关于矢量逆时针旋转角为正的规定，应为负角度，即

$$ \Delta \angle (s + Z_2) = -90^\circ $$

实际上，所有在 Γ_s 内的零点和极点，当 s 沿 Γ_s 逆时针绕一圈时，它们的幅角变化均为负，对 $\angle F(s)$ 的幅角有影响。
实际上，所有在 s 平面内零点和极点，当 s 沿 Γ_r 绕一圈时，矢量幅角的变化均为 “-2π ”。
由此可知，当 Γ_r 内有 Z 个 $F(s)$ 零点和 P 个 $F(s)$ 的极点时，s 沿 Γ_r 顺时针绕一圈回到 S_r 时，总幅角的变化值，由式（5-60）得
$$
\Delta \angle (s + Z) = -2\pi
$$
最终证明
$$
P - Z = N
$$

【注意】
若知道系统的开环极点数 P 及 F 平面上 Γ_f 绕原点的圈数 N，则由式（5-61）可以求出 Γ_r 内所具有的 $F(s)$ 的零点数 Z。

2. 奈奎斯特稳定性判据

因为辅助函数 $F(s)$ 的零点就是闭环系统的极点，所以，若在 S 平面的右半平面有一个以上的 $F(s)$ 的零点存在，则闭环系统不稳定。

为了应用上面的幅角原理确定 S 平面的右半平面是否存在 $F(s)$ 的零点，把封闭曲线 Γ_r 包围的范围取为整个 S 平面的右半平面，即 Γ_r，由如图 5-30 所示的虚轴和半径 R 为无穷大的半圆组成。这样，幅角原理表达式（5-61）中的 P 和 Z 则分别表示位于 S 平面右半平面上的辅助函数 $F(s)$ 的极点数和零点数。

如图 5-30 所示，包围整个 S 右半平面的这条封闭曲线 Γ_s，又称为奈奎斯特路径，简称奈氏路径。而在 F 平面上与这条奈氏路径 Γ_f 相对应（映射）的路径 Γ_f 称为奈奎斯特曲线，简称奈氏曲线。下面证明，此奈氏曲线 Γ_f 的形状与系统的开环幅相频率特性 $G_e(j\omega)$ 相同，两者只相
差一个单位长度。

如图 5-30 所示的 \(\Gamma \) 曲线, 可视为由两部分组成。第一部分为虚轴, 即 \(s = j \omega \), \(\omega \) 由 \(-\infty \to 0 \to +\infty \) 变化; 第二部分为半径 \(R \) 为无穷大的半圆, 即 \(|s| \to \infty \)。

当 \(s \) 沿着 \(\Gamma \) 的第一部分变化时, 由式 (5-58) 得 \[F_1(s) = F(j \omega) = 1 + G(j \omega)H(j \omega) = 1 + G_K(j \omega), \quad \omega : -\infty \to +\infty \] (5-62)

d 当 \(s \) 沿着 \(\Gamma \) 的第二部分变化时, 由于实际的物理系统, 通常其开环传递函数分母的阶次大于分子的阶次, 因此, 当 \(|s| \to \infty \) 时, \(G(s)H(s) \to 0 \), 由式 (5-58) 得 \[F_2(s) = 1 + G(s)H(s) = 1 + 0 = 1, \quad |s| \to \infty \] (5-63)

式 (5-63) 表明, \(s \) 沿着无穷大半径的半圆路径运动的全过程, 在 \(F \) 平面上的映射为一个点 \((1, j0)\)。

这样, 当 \(s \) 沿着图 5-30 所示的奈氏路径 \(s \) 运动时, 其在 \(F \) 平面上得到的映射轨迹及幅角的变化就由式 (5-62) 描述。由式 (5-62) 可知, 若把这条映射曲线向左移动一个单位, 就是当 \(\omega \) 从 \(-\infty \) 变化到 \(+\infty \) 时, 系统开环幅相频率特性曲线 \(G_K(j \omega) \)。它与 \(F \) 平面的关系如图 5-31 所示。

![图 5-31](image)

图 5-31 \(G_k(j \omega) \) 平面与 \(F \) 平面的关系示意

比较图 5-31（a）与（b）可看到, \(\Gamma_f \) 曲线绕原点的圈数等于 \(G_K(j \omega) \) 当 \(\omega \) 从 \(-\infty \) 变化到 \(+\infty \) 时特性曲线绕 \((-1, j0)\) 点的圈数。因此, 可以直接利用开环频率特性 \(G_K(j \omega) \) 绕 \((-1, j0)\) 来计算出 \(N \) 的值。然后, 再根据系统开环极点在 \(S \) 右半平面的数目 \(P \), 就可按式 (5-61) 计算出辅助函数 \(F(s) \) 在 \(S \) 右半平面的零点个数, 即闭环极点个数 \(Z \)。如果闭环系统是稳定的, 必有 \(Z = 0 \), 即 \(N = P \)。于是, 上述的幅角原理可用来判定闭环控制系统中的稳定性, 这便是在控制系统原理中广泛应用的奈氏稳定性判据。

奈氏判据: 控制系统稳定的充分必要条件是, 开环幅相频率特性曲线 \(G_K(j \omega) \), 当 \(\omega \) 从 \(-\infty \) 变化到 \(+\infty \) 时, 逆时针包围临界点 \((-1, j0)\) 的圈数 \(N \) 等于开环传递函数在 \(S \) 右半平面的极点数 \(P \)。

当开环传递函数没有 \(S \) 右半平面的极点时, 即 \(P = 0 \) （或称为闭环系统是稳定时), 闭环系统稳定的充分必要条件是, 系统的开环幅相频率特性曲线 \(G_K(j \omega) \), 当 \(\omega \) 从 \(-\infty \) 变化到 \(+\infty \) 时, 不包围极点 \((-1, j0)\), 即 \(N = 0 \)。

若 \(N \) 不等于 \(P \), 则闭环系统不稳定。这时, 闭环系统正实部特征根的个数 \(Z \), 按 \(Z = P - N \) 确定。

最后还需要指出, 当已知的开环频率特性 \(G_K(j \omega) \) 通过临界点 \((-1, j0)\) 时, 与此对应的闭环系统将处于临界稳定状态。设开环频率特性 \(G_K(j \omega) \) 在 \(\omega = \omega_0 \) 时通过临界点 \((-1, j0)\), 这时得到如下的临界条件:
应用上面的临界条件，可求出待定参数（通常为开环放大系数）的临界值。

【注意】
① $G_k(j\omega)$ 不包围临界点 $(-1, j0)$，若系统在 S 右半平面内无开环极点，则闭环系统稳定；反之，闭环系统不稳定。
② $G_k(j\omega)$ 逆时针包围临界点 $(-1, j0)$ P 次，如果系统在 S 右半平面内有 P 个开环极点，那么，说明闭环系统稳定；反之，闭环系统不稳定。
③ $G_k(j\omega)$ 顺时针包围临界点 $(-1, j0)$，说明闭环系统不稳定。
④ $G_k(j\omega)$ 经过临界点 $(-1, j0)$，说明闭环系统有开环极点位于虚轴上。

【例 5-6】单位负反馈控制系统的开环传递函数为 $G_k(s) = \frac{2}{s-1}$，试用奈氏判据判别闭环系统的稳定性。

【解】开环频率特性为 $G_k(j\omega) = \frac{2}{j\omega-1}$，开环幅相频率特性曲线，如图 5-32（a）所示中的实线。

以虚轴为对称轴，即可画出 ω 从 $-\infty \rightarrow 0$ 变化时的幅相频率曲线，如图 5-32（a）中的虚线。

由开环传递函数可知，有一个正极点 $P=1$；而开环频率特性当频率 ω 从 $-\infty \rightarrow \infty$ 变化时，逆时针包围临界点一圈 (2π)。故闭环系统是稳定的（因为 $Z=0$）。

【MATLAB 实现】

```matlab
G=tf(2,[1,-1]);
nyquist(G);grid %绘制奈氏图
```

由 MATLAB 绘制的奈氏图如图 5-32（b）所示。
3. 开环系统含有积分环节的奈氏判据

幅角原理的使用条件是要求在 Γ_s 路径上没有 $F(s)$ 的零点和极点。但是，当开环传递函数中含有积分环节时，这种条件遭到破坏。为了解决这个问题，封闭曲线Γ_s应加以改动。习惯上采用以半径为无穷小的半圆在原点的右侧绕过这一极点，而其他地方不变的方法。小半圆映射到 F 平面上时，就变成为半径无限大、沿顺时针方向从 $+\frac{\pi}{2}$ 到 $-\frac{\pi}{2}$ 且覆盖整个 S 右半平面的半圆，如图 5-33 所示。

这种方法可以推广到虚轴上有多重极点的情况。采用局部修改的奈氏曲线后，仍应用上面的奈氏判据来判定闭环系统的稳定性。

图 5-33 开环传递函数含有积分环节或虚极点的奈氏路径

【例 5-7】系统开环传递函数为 $G_K(s) = G(s)H(s) = \frac{K}{s(Ts+1)}$，试判断闭环系统的稳定性。

【解】首先绘制系统的奈氏曲线，如图 5-34（a）所示，再绘制出 ω 在 $-\infty \rightarrow 0^+$ 范围内奈氏曲线的镜像（与实线关于实轴对称的虚线部分）。以正虚轴无限远处为起点，绕原点顺时针转到负虚轴，画出无限大的右半圆，圆弧将 $\omega \rightarrow 0^+$ 和 $\omega \rightarrow 0^-$ 的特性曲线连接起来，组成封闭曲线。

根据奈氏稳定性判据，系统的开环奈氏图未包围临界点 $(-1, j0)$，且由系统开环传递函数可知，系统无右极点，即 $P = 0$，故 $Z = N + P = 0$，说明闭环系统稳定。

图 5-34 例 5-7 开环系统奈氏图
自动控制原理

\[
K=10; T=0.2; \\
G=tf(K,[\text{conv([1,0],[T,1])}]); \\
nyquist(G); title('奈奎斯特图'); grid \\
\]

%绘制奈氏图

4. 奈氏判据的实际应用方法

实际上，只需绘制 \(\omega \) 从 0 \(\rightarrow \) \(+\infty \) 时的开环幅相频率特性曲线，然后按其逆时针包围临界点 \((-1,j0)\) 的圈数 \(N' \) 和开环传递函数在 \(S \) 右半平面上的极点数 \(P \)，再根据式 (5-64):

\[
Z = P - 2N'
\] (5-64)

就能确定闭环特征方程正实部根的个数。若 \(Z = 0 \)，则闭环系统稳定；否则，不稳定。

【注意】

① 若顺时针包围，\(N' \) 取负值，则闭环系统肯定不稳定。
② 若开环传递函数 \(G(s) \) 中包含 \(\nu \) 个积分环节，则绘制出开环幅相频率特性曲线后，应在与频率为 0°对应的点开始，逆时针方向补画 \(1/4 \times \nu \) 个半径为无穷大的半圆，如图 5-35 所示，然后再按上面方法判断稳定性。图 5-35 (a), (b), (c) 分别画出了 \(\nu = 1, 2 \) 和 3 时的幅相频率特性曲线及其增补特性。

【例 5-8】已知单位负反馈的开环传递函数为 \(G(s)H(s) = \frac{5}{(2s+1)(s+1)} \)，试用奈氏判据判断闭环系统的稳定性。

【解】考虑积分环节的增补频率特性，开环系统幅相频率特性曲线如图 5-35 所示。由图可知，\(N' = -1 \)，而开环传递函数中没有 \(S \) 右半平面上的极点，即 \(P = 0 \)。根据奈氏判据，得

\[
Z = P - 2N' = 0 - 2 \times (-1) = 2
\]

有两个正实部的闭环极点，说明闭环控制系统不稳定。

【MATLAB 实现】

\[
G=tf(5,[\text{conv([1,0],conv([2,1],[1,1])})]); \\
nyquist(G); title('奈奎斯特图'); grid \\
\]
第 5 章 控制系统的频域分析法

5. 伯德图使用奈氏判据

用奈氏稳定性判据时，若采用对数频率特性曲线，则可使绘图工作大大简化。下面讨论怎样通过伯德图，用奈氏判据判断闭环控制系统的稳定性。

1）穿越

开环幅相频率特性 $G(s)H(s)$ 曲线通过临界点 $(-1, j0)$ 以左的负实轴，称为穿越。其中，沿 ω 增加方向，$G_k(j\omega)$ 曲线自上向下的穿越称为正穿越。反之，沿 ω 增加方向，$G_k(j\omega)$ 曲线自下向上的穿越称为负穿越。其示意图如图 5-37 所示。

正穿越意味着幅相频率特性曲线对 $(-1, j0)$ 点的逆时针方向的包围。负穿越意味着幅相频率特性曲线对 $(-1, j0)$ 点的顺时针方向的包围。从正、负穿越的角度看，奈氏判据叙述如下：

若系统开环传递函数有 P 个极点在 S 右半平面，则当 ω 从 $0 \rightarrow +\infty$ 变化时，在极坐标图上 $G_k(j\omega)$ 曲线正穿越与负穿越次数之差为 $\frac{P}{2}$，则闭环系统是稳定的，否则闭环系统不稳定。

2）奈氏图与伯德图的对应关系

对照奈氏图与伯德图，有如下对应关系：奈氏图上以原点为圆心的单位圆，对应于伯德图的零分贝线；单位圆外的区域，对应于零分贝线以上的区域；单位圆内的区域，对应于零分贝线以下的区域；奈氏图上的负实轴，对应于伯德图上的 -180° 线。以上的对应关系如图 5-38 所示。
根据以上概念，利用伯德图的奈氏判据的叙述如下：若系统开环传递函数有 P 个极点在 S 右半平面，则闭环系统稳定的充分必要条件如下：在对数幅频特性为正的所有频段内，对数相频特性与 -180° 相位线的正穿越和负穿越次数之差为 $\frac{P}{2}$。若开环传递函数的全部极点在 S 的左半平面，即 $P = 0$，在对数幅频特性为正的所有频段内，对数相频特性对 -180° 相位线正、负穿越次数之差为零，则闭环系统是稳定的；否则，闭环系统不稳定。

用对数频率特性判别系统稳定性的示意图，如图 5-39 所示。

【例 5-9】已知控制系统的开环传递函数为 $G(s) = \frac{133}{s(0.2s + 1)(s + 1)}$，试用伯德图判定闭环系统的稳定性。

【MATLAB 实现】
```matlab
w=[0,logspace(-2,2)]; %定义频率绘制范围
G=tf(133,[conv([1,0],conv([0.2,1],[1,1])),]);
bode(G,w);title('伯德图');grid %绘制伯德图
```
第 5 章 控制系统的频域分析法

绘制出的伯德图如图 5-40 所示。

分析开环传递函数知，其在 S 右半平面的开环极点个数 $P = 0$，开环稳定。但是，分析伯德图知，在 $L(\omega) > 0$dB 的所有频段区间内，随着 ω 的增加，相频特性曲线 $\phi(\omega)$ 对 -180° 的正、负穿越次数之差为 $0 - 1 = -1 \neq P = 0$，因此闭环系统不稳定。

【例 5-10】单位负反馈控制系统的开环传递函数为

$$G_k(s) = \frac{500(s + 1)(0.5s + 1)}{s(10s + 1)(0.1s + 1)(0.025s + 1)}$$

试用伯德图判定闭环系统的稳定性。

【MATLAB 实现】

```matlab
w=[0,logspace(-2,2)];
num=500*conv([1,1],[0.5,1]);
den1=conv([10,1],[5,1]),conv([0.1,1],[0.025,1]);
den=conv(den1,[1,0]);
G=tf(num,den);
bode(G,w);title('伯德图');grid
```

绘制出的伯德图如图 5-41 所示。

由伯德图可知，在 $L(\omega) > 0$dB 的所有频段区间内，随着 ω 的增加，相频特性曲线 $\phi(\omega)$ 对 -180° 的正、负穿越次数各一次，即 $P = 0$。根据奈氏判据，闭环系统稳定。
5.5.2 控制系统的稳定裕量

控制系统设计首先必须保证系统是稳定的，系统是否稳定是一个“绝对”的概念。对于同一个控制系统，由于参数的变化，系统可能由稳定变为不稳定，所以系统不仅要稳定还必须具备一定的“相对”稳定性要求，常用稳定裕量作为衡量闭环控制系统稳定程度的指标，这也是频域分析法的重要指标。

对于一个最小相位系统，即系统在右半平面内无极点，闭环系统稳定的必要条件是开环系统幅相频率特性不包围$1j\omega$，系统阶跃响应的振荡越强，相对稳定性也就越差。若穿越$1j\omega$，则系统处于临界稳定状态。这种开环频率特性和负实轴的交点与点$(1, j0)$的接近程度就用稳定裕量来表示，可分为相位裕量ϕ_{ω}和增益裕量GM。

1. 相位裕量ϕ_{ω}

开环幅相特性曲线上幅值为1的点和-180°线（负实轴）的相位差就是相位裕量，可表示为

$$\phi_{\omega} = \phi(\omega_k) - (-180^\circ) = \phi_{\omega_k} + 180^\circ$$

式中，ω_k为$|G_k(j\omega)|=1$时的频率，称为截止频率或幅值穿越频率，如图5-42所示。

在开环对数频率特性曲线上，开环幅频特性$|G_k(j\omega)|=1$的频率，对应开环对数幅频特性$L(\omega)$曲线与0dB线交点，或者说$L(\omega)$穿越横轴时的频率，相位裕量则对应截止频率ω_k处的相频特性ϕ_{ω_k}与-180°线之差。

相位裕量在极坐标图（奈氏图）和对数频率特性图（伯德图）上的表示如图5-43所示。在奈氏图中，从原点到单位圆与开环奈氏图$G_k(j\omega)$的交点画出一条直线，直线和负实轴之间的夹角就是相位裕量。
第 5 章 控制系统的频域分析法

图 5-42 相位裕量和增益裕量示意图

图 5-43 稳定系统与不稳定系统的相位裕量与增益裕量

2. 增益裕量 $G.M.$

增益裕量又称为幅值裕量，它是指相位为 -180° 这一频率值 ω_b 所对应的幅值倒数的分贝数，记作 $G.M.$，用公式表示为:

$$ G.M. = 20\log \left| \frac{1}{G_K(j\omega_b)} \right| = 20\log |G_K(j\omega_b)| = -20\log A(\omega_b) \quad (5-66) $$

式中，ω_b 是开环幅相频率特性的相位等于 -180° 时的频率，称为相位穿越频率。

增益裕量的物理意义是：为了保持系统稳定，系统开环增益所允许增加的最大分贝数。若
自动控制原理

系统的开环传递函数的增益增大到原来的 $G.M.$ 倍，则系统处于临界稳定状态。

对于最小相位系统，增益裕量与系统稳定性之间有如下关系:

$G.M. > 0$dB，系统稳定。

$G.M. = 0$dB，系统临界稳定。

$G.M. < 0$dB，系统不稳定。

3. 中频宽度 h

开环对数幅频特性以斜率为 -20dB/dec 穿过横轴的线宽 h，称为中频宽度，其表达式为

$$ h = \frac{\omega_2}{\omega_1} $$ (5-67)

如图 5-44 所示，中频宽度 h 是一个重要的特征参数，h 的长短反映了系统的平稳性，h 越大，系统的平稳性越好。

上面的三个指标都是用于表征系统稳定程度的，即相位裕量 $\gamma(\alpha_k)$、增益裕量 $G.M.$ 和中频宽度 h。一般来说，仅用相位裕量或增益裕量来评价系统的稳定程度是不够充分的。因此，对要求较高的系统，这两个指标要同时使用，这样能较好地表征系统的稳定程度。但是，对只要求估算或评价系统稳定性时，若是最小相位系统，通常只用相位裕量 $\gamma(\alpha_k)$ 就足够了。对于中频宽度 h，可单独来评价系统的稳定程度。在综合分析系统时，最常用的是截止频率 ω_k、相位裕量 $\gamma(\alpha_k)$。截止频率 ω_k 用于反映系统的快速性能，相位裕量 $\gamma(\alpha_k)$ 用于反映系统的稳定程度。

通常，为了使系统具有满意的平稳性，要求有 30°~70° 的相位裕量和大于 6dB 的增益裕量。
第5章 控制系统的频域分析法

5.6 开环频域指标与时域指标之间的关系

控制系统的性能指标大致可分为两大类：时域性能指标和频域性能指标。它们分别从时域和频域角度来描述系统的固有特性。

5.6.1 控制系统的主要性能指标

1. 开环频域指标

控制系统的开环频域指标有相位裕量 $\gamma(\omega)$、增益裕量 $G.M.$、相位穿越频率 ω_c、截止频率 ω_k 和中频宽度 h。对于稳定的最小相位系统，经常采用的频域性能指标是相位裕量 $\gamma(\omega)$ 和截止频率 ω_k。

2. 时域指标

控制系统的时域指标包括稳态指标和动态指标，常用的时域指标如下。
① 稳态性能指标：系统型别 ν、开环比例（放大）系数 K 和稳态误差 e_s。
② 动态性能指标：超调量 $\sigma\%$、调节时间 t_s、上升时间 t_r 和峰值时间 t_p 等。

5.6.2 开环频域指标与时域指标之间的关系

一般的控制系统对数幅频特性都有如图5-45所示的基本特性，整个频域还可划分为低频段、中频段和高频段三个阶段，但这个划分只是一个大概的范围。低频段是第一个转折点之前的频段，中频段则是 ω_c 附近的频段，高频段则远远高于 ω_k。由于频段不同，对系统性能的影响也有所差异。

![常见典型开环系统的对数幅频特性曲线](image)

图5-45 常见典型开环系统的对数幅频特性曲线

1. 开环幅频特性低频段特性与时域指标

低频段反映了频率特性和稳态误差之间关系。低频段的频率特性由开环传递函数含有的
自动控制原理

积分环节的数目 ν 和开环比例系数 K 决定。在开环系统伯德图的绘制中，已经提到开环对数幅频特性 $20\log|G_K(j\omega)|$ 最左端渐近线斜率为 $\nu \times (-20\text{dB/dec})$，渐近线或延长线在 $\omega=1$ 频率处的分贝值等于 $20\log K$。通过型别 ν 和开环比例系数 K 可对控制系统的稳态性能进行分析。

低频段对数幅频特性曲线如图 5-46 所示。可见，低频段的曲线越陡，积分环节数就越多，低频段所处位置越高，开环增益就越大，系统的稳态误差也越小。

![图 5-46 低频段对数幅频特性曲线](image)

2. 二阶系统开环频域指标与时域指标的关系

控制系统的动态性能通常用时域指标超调量 $\sigma\%$ 和调节时间 t_r 来描述。而系统开环频率特性指标则主要由对数幅频特性的截止频率 ω_c 和相位裕量 $\gamma(\omega_c)$ 来描述。中频段的斜率和宽度反映了系统动态性能的平稳性，而截止频率 ω_c 的大小反映了系统的快速性。

设二阶系统的开环传递函数为 $G_K(s) = \frac{\omega_c^2}{s(s + 2\zeta\omega_c)}$，其频率特性为

$$G_K(j\omega) = \frac{\omega_c^2}{j\omega(j\omega + 2\zeta\omega_c)}$$

求出开环幅频特性及相频特性为

$$
\begin{align*}
|G_K(j\omega)| &= \frac{\omega_c^2}{\sqrt{\omega^2 + (2\zeta\omega_c)^2}} \\
\angle G_K(j\omega) &= -90^\circ - \tan^{-1} \left(\frac{\omega}{2\zeta\omega_c} \right)
\end{align*}
$$

(5-68)

由截止频率的定义，得

$$
\left| G_K(j\omega) \right| = \frac{\omega_c^2}{\omega_c \sqrt{\omega_c^2 + (2\zeta\omega_c)^2}} = 1
$$

求得截止频率

$$\omega_c = \omega_c \sqrt{1 + 4\zeta^2 - 2\zeta^2}$$

(5-69)

将求得的截止频率 ω_c 代入 (5-68)，得

$$
\angle G_K(j\omega) = -90^\circ - \tan^{-1} \left(\frac{\sqrt{1 + 4\zeta^2 - 2\zeta^2}}{2\zeta} \right)
$$
第 5 章 控制系统的频域分析法

由相位裕量的定义，得

$$\gamma = 180^\circ + \varphi(\omega_k) = 90^\circ - \tan^{-1}\left(\frac{\sqrt{1+4\zeta^2} - 2\zeta}{2\zeta}\right) = \tan^{-1}\left(\frac{2\zeta}{\sqrt{1+4\zeta^2} - 2\zeta}\right)$$ \hspace{1cm} (5-70)

可见，相位裕量 γ 和阻尼比之间存在一一对应关系（$\zeta \approx 0.01\gamma$），这种关系可近似地用一条直线来表示，如图 5-47 所示。

图 5-47 二阶系统的 $\gamma - \zeta$ 关系曲线

描述二阶系统的闭环控制系统时域响应的另外几个主要指标为

$$\sigma% = e^{-\frac{\zeta}{\omega_h}} \times 100\%$$

$$t_e(5\%) = \frac{1}{\zeta\omega_h}\left[3 - \frac{1}{2}\ln(1 - \zeta^2)\right] \approx \frac{3}{\zeta\omega_h}$$

$$t_e(2\%) = \frac{1}{\zeta\omega_h}\left[4 - \frac{1}{2}\ln(1 - \zeta^2)\right] \approx \frac{4}{\zeta\omega_h}$$

$$t_p = \frac{\pi}{\omega_h} = \frac{\pi}{\omega_h\sqrt{1 - \zeta^2}}$$

可见，超调量 $\sigma%$、调节时间 t_e 以及峰值时间 t_p 都是阻尼比 ζ 的函数，t_e 和 t_p 都是表征二阶系统响应速度的时域性能指标，而超调量 $\sigma%$ 反映了系统响应的平稳性。

3. 高阶系统开环频域指标与时域指标的关系

1）超调量 $\sigma%$ 与相位裕量 γ 之间的关系

在描述高阶系统阻尼程度的频域指标与时域指标之间无法用简单的关系式来表示，但是在控制工程实践中，通过大量的系统研究，总结了以下经验公式来估算：

$$\sigma% = 0.16 + 0.4(M_r - 1) \quad 1 \leq M_r \leq 1.8$$

式中，M_r 为高阶系统闭环幅频特性的相对谐振峰值，可近似表示为 $M_r = \frac{1}{\sin \gamma}$。于是可以得到频域指标 γ 与时域指标 $\sigma%$ 之间的关系式，得
自动控制原理

\[\sigma\% = 0.16 + 0.4 \left(\frac{1}{\sin \gamma} - 1 \right), \quad 34^\circ \leq \gamma \leq 90^\circ \] (5-71)

2）调节时间 \(t_c \) 和相位裕量 \(\gamma \) 之间的关系

高阶系统的调节时间与相位裕量的关系通常用以下经验公式表示:

\[t_c = \frac{\pi}{\omega_k} \left[2 + 1.5 \left(\frac{1}{\sin \gamma} - 1 \right) + 2.5 \left(\frac{1}{\sin \gamma} - 1 \right)^2 \right], \quad 34^\circ \leq \gamma \leq 90^\circ \] (5-72)

式中，\(t_c \) 单位为秒(s)。

如图 5-48 是根据式(5-71)和式(5-72)绘制的曲线，可以看出，随着稳定裕量中相位裕量 \(\gamma \) 的增加，调节时间 \(t_c \)（\(\omega_k \) 固定）和超调量 \(\sigma\% \) 就会下降。

![图 5-48 高阶系统的 \(t_c \) 、 \(\gamma \) 、 \(\sigma\% \) 的关系曲线](image)

4. 高频段的处理

高频段的转折频率远远高于截止频率 \(\omega_k \)，开环频率特性对系统动性能中的 \(t_c \) 和 \(\sigma\% \) 影响较小，但从系统抗干扰能力来看，要求高频段具有较大的斜率。以单位负反馈系统为例，闭环频率特性为

\[G(j\omega) = \frac{G_k(j\omega)}{1 + G_k(j\omega)} \]

式中，\(G_k(j\omega) \) 为开环频率特性。

在高频段，一般 \(20 \log |G_k(j\omega)| \ll 0 \)，即 \(|G_k(j\omega)| \ll 1 \)，因此，可近似地得出

\[|G(j\omega)| \approx \left| \frac{G_k(j\omega)}{1 + G_k(j\omega)} \right| \]

可见，在高频段的闭环系统幅频特性近似于开环幅频特性。高频段大斜率对高频信号有很强的衰减能力，因此系统抗干扰能力强。
第 5 章 控制系统的频域分析法

5.7 MATLAB 频域分析

5.7.1 线性系统的频域分析

【例 5-11】 已知系统的传递函数为 \(G(s) = \frac{10}{6s + 1} \)，试计算 \(\omega = 1(s^{-1}) \) 和 \(10(s^{-1}) \) 幅频特性和相频特性。

【MATLAB 实现】

```matlab
G=tf(10,[6,1]);
w=1;Gw=freqresp(G,w);
Aw=abs(Gw) %计算幅频
Fw=angle(Gw) %计算相频
Aw =
1.6440
Fw =
-1.4056
```

【例 5-12】 已知系统的传递函数为 \(G_1(s) = \frac{10}{s(s+1)(5s+1)} \)， \(G_2(s) = \frac{10}{s(5s+1)} \)， \(G_3(s) = \frac{10}{5s+1} \)。试绘制三个系统的奈奎斯特图。

【MATLAB 实现】

```matlab
G1=tf(10,conv([1,1],[5,1,0]));
G2=tf(10,[5,1,0]);
G3=tf(10,[5,1]);
nyquist(G1,'k',G2,'k',G3,'k');title('奈奎斯特图');xlabel('实轴');ylabel('虚轴');
```

由 MATLAB 绘制奈奎斯特图如图 5-49 所示。

【例 5-13】 已知系统的传递函数为 \(G(s) = \frac{10}{(s+1)(5s+1)} \)。试绘制系统的伯德图。

【MATLAB 实现】

```matlab
G=tf(10,conv([1,1],[5,1]));
subplot(1,2,1);
bode(G,'k');grid on
subplot(1,2,2);
bodemag(G);grid on
```

由 MATLAB 绘制伯德图如图 5-50 所示。
5.7.2 频域分析性能指标

【例 5-14】已知系统的传递函数为

\[G(s) = \frac{s + 1}{s \left(\frac{1}{2}s + 1 \right) \left(\frac{1}{9}s^2 + \frac{1}{3}s + 1 \right) } \]

试绘制系统的伯德图并绘制单位阶跃响应验证之。
【MATALAB 实现】

```matlab
G=tf([1,1],conv([1/2,1,0],[1/9,1/3,1]));
subplot(1,2,1);
margin(G);grid on
subplot(1,2,2)
G1=feedback(G,1);
step(G1);grid on
```

由 MATLAB 绘制伯德图及单位阶跃响应曲线如图 5-51 所示。

【例 5-14】伯德图及单位阶跃响应曲线

【例 5-15】对于典型二阶系统，已知 $\sigma = 15\%$，$t_a(2\%) = 3s$。试计算相位裕量 ϕ。

【解】典型二阶系统的开环传递函数为

$$G(s) = \frac{\omega_n^2}{s(s + 2\omega_n\zeta)}$$

由 $\sigma = 15\%$，$t_a(2\%) = 3s$，得

$$\sigma = e^{-\frac{\sqrt{\zeta^2 - 1}}{\zeta}} \times 100\% = 15\%$$

$$t_a(2\%) = \frac{1}{\zeta\omega_n} \left[4 - \frac{1}{2} \ln \left(1 - \zeta^2 \right) \right] \approx \frac{4}{\zeta\omega_n} = 3$$

得

$$\zeta = \frac{1}{\sqrt{1 + \left(\frac{\pi}{\ln 0.15} \right)^2}} = 0.517$$

$$\omega_n = \frac{4}{3\zeta} = 2.58$$
则二阶系统的开环频率特性为

\[G(j\omega) = \frac{\omega_c^2}{s(s + 2\zeta \omega_c)} = \frac{2.58^2}{j\omega(j\omega + 2 \times 0.517 \times 2.58)} = \frac{6.66}{\omega \sqrt{7.12 + \omega^2}} e^{-\left(\frac{90^\circ \tan^{-1} \frac{\omega}{2.67}}{\omega_c^2}\right)} \]

由 \(|G(j\omega)| = 1\), 有 \(\frac{6.66}{\omega \sqrt{7.12 + \omega^2}} = 1\)，得 \(\omega_c = 2(s^{-1})\)。

再由 \(\gamma = 180^\circ + \phi(\omega_c) = 180^\circ - 90^\circ - \tan^{-1} \frac{\omega}{2.67}\)，得 \(\gamma = 53.5^\circ\)。

由 MATLAB 绘制伯德图及单位阶跃响应图如图 5-52 所示。

【例 5-16】若截止频率 \(\omega_c = 5\)，试确定下述传递函数的参数 \(K\) 或 \(T\)，并绘制出对数频率特性曲线。

(1) \(G(s) = \frac{Ks^2}{(1 + 0.2s)(1 + 0.02s)(1 + 2s)}\)
(2) \(G(s) = \frac{100}{s(1 + s)(1 + Ts)(1 + 10Ts)}\)

【解】截止频率的定义为 \(|G(j\omega_c)| = 1\)

(1) 由系统的传递函数，得

\[|G(j\omega_c)| = \frac{K\omega_c^2}{\sqrt{1 + 0.04\omega_c^2} \sqrt{1 + 0.0004\omega_c^2} \sqrt{1 + 4\omega_c^2}} = 1 \]

解得 \(K = 0.571\)

(2) 由系统的传递函数，得

\[|G(j\omega_c)| = \frac{100}{\omega_c \sqrt{1 + \omega_c^2} \sqrt{1 + T^2\omega_c^2} \sqrt{1 + 100T^2\omega_c^2}} = 1 \]

解得 \(T = 0.071\)

由求得的 \(K = 0.571\) 和 \(T = 0.071\)，分别绘制系统对数幅频特性曲线。
由 MATLAB 绘制伯德图如图 5-53 所示。
习 题

5-1 已知单位负反馈控制系统的开环传递函数为 \(G_K(s) = \frac{10}{s+5} \)。试分别求解闭环控制系统输入以下信号时系统的稳态输出。
(1) \(r(t) = \sin 2t \)
(2) \(r(t) = \sin(2t + 30^\circ) \)
(3) \(r(t) = \sin(2t + 30^\circ) + 2\cos(2t - 45^\circ) \)

5-2 试绘制下列传递函数的伯德图。
(1) \(G(s) = \frac{1}{s(2s^2 + 3s + 1)} \)
(2) \(G(s) = \frac{100}{s(s^2 + s + 1)(6s + 1)} \)
(3) \(G(s) = \frac{75(0.2s + 1)}{s(s^2 + 16s + 100)} \)
(4) \(G(s) = \frac{s + 3}{(s + 1)(s - 1)} \)
(5) \(G(s) = \frac{20(3s + 1)}{s^2(6s + 1)(10s + 1)(s^2 + 4s + 25)} \)
(6) \(G(s) = \frac{8(s + 0.1)}{s(s^2 + s + 1)(s^2 + 4s + 25)} \)

5-3 设单位负反馈系统的开环传递函数分别如下:
(1) \(G_K(s) = \frac{as + 1}{s^2} \)
(2) \(G_K(s) = \frac{K}{(0.01s + 1)^3} \)
试确定使相位裕量等于 45°的 \(a \) 值和 \(K \) 值。

5-4 某系统的结构图和幅相频率特性曲线如图 5-54 所示。图中 \(G(s) = \frac{1}{s(s+1)^2} \) , \(H(s) = \frac{s^3}{(s+1)^2} \)。试判断闭环系统的稳定性, 并确定闭环特征方程正实部根的个数。

5-5 已知开环系统传递函数为 \(G(s)H(s) = \frac{K}{s(s-1)} \) , 试绘制奈奎斯特图并判断闭环系统的稳定性。

5-6 某单位负反馈系统的开环传递函数为 \(G(s)H(s) = \frac{K_0}{s(s+1)(s+5)} \) , 试求 \(K_0 = 10 \) 时系统...
第 5 章 控制系统的频域分析法

的相位裕量和增益裕量。

5-7 某单位负反馈系统的开环传递函数为 \(G(s)H(s) = \frac{2}{s(0.1s + 1)(0.5s + 1)} \)，试求 \(r(t) = 5\sin 2t \) 时系统的稳态误差。

5-8 单位负反馈系统的开环传递函数如下：

(1) \(G(s)H(s) = \frac{16}{s(s + 2)} \)

(2) \(G(s)H(s) = \frac{60(0.5s + 1)}{s(5s + 1)} \)

试绘制系统的闭环频率特性曲线，并计算系统的谐振频率及谐振峰值。

5-9 如图 5-55 所示为闭环控制系统结构图。当 \(t \geq 0 \) 时，输入信号 \(r(t) = 1(t) \)，要求系统的稳态误差 \(e_s \leq 2\% \)，且增益裕量 \(G.M. \geq 6\text{dB} \)，试求增益 \(K \) 取值范围。

![图 5-55 结构图](image)

图 5-55 结构图
自动控制系统的研究分为设计和分析两大任务。分析是指在控制系统的结构和参数已知的情况下，通过建模，基于时域分析法、频域分析法和根轨迹法等，对相应的静态、动态性能进行分析和指标参数的计算等过程。设计是指根据控制系统运行的实际需求，基于被控对象的特性，合理地确定设计方案、结构类型及其部件，计算控制参数，并以仿真和实验加以验证、修正，建立能够满足稳定过程性能指标的、经济性和可靠性好的实用控制系统的过程。

为了提高和改善系统的性能指标，常在系统中引入合适的附加装置，该附加装置称为校正装置。选择和确定校正装置的结构参数及接入方式的过程，称为系统的校正或综合。校正系统设计的重要内容和关键设计过程。与分析系统对应，对线性系统进行校正时，可采用多种方法，如时域法、根轨迹法和频域法等。
第 6 章 控制系统的分析与校正

6.1 控制系统校正

6.1.1 校正的基本概念

控制系统设计时，被控对象是已知的，根据被控对象的特点、工艺要求来对自动化仪表设备进行选型，依据反馈原理将它们连接起来，从而构成基本的自动控制系统。

但是在实际控制系统工作过程中，自身参数往往难以改变，系统性能较差，不能满足生产工艺要求。因此，要使设计的控制系统有效地满足稳态性能和动态性能要求，必须有目的地引进其他装置（常称为校正装置或补偿装置）来改善系统的性能。

校正的实质就是按照技术性能指标要求，选择合理的校正方法，确定校正装置的形式，计算校正参数等，以达到改善控制系统性能的目的。

6.1.2 校正的基本方式

依据校正装置在控制系统中的连接方式，一般分为串联校正、反馈校正和复合校正。如图 6-1 所示，图中的 $G_c(s)$ 为校正装置（校正环节），$G_0(s)$ 为被校正对象，$H(s)$ 为反馈环节。

(a) 串联校正 (b) 反馈校正 (c) 复合校正

图 6-1 控制系统校正的基本方式

（1）串联校正。串联校正是将校正装置放在前向通路内，使其与被校正对象相串联。其特点是结构简单、功耗较小。

（2）反馈校正。反馈校正是将校正装置与被校正对象的某个环节或部件组成局部反馈系统。其特点是能有效地抑制系统参数的波动，减小非线性的影响。

（3）复合校正。复合校正是将串联校正、反馈校正有效地组合，满足控制系统性能要求高的系统。其特点是既能保持系统的稳定性，又能有效地抑制外界干扰，最大限度地减小稳态误差。

6.1.3 系统校正的方法

控制系统的性能指标通常包括稳态性能指标和动态性能指标。

（1）稳态性能指标包括静态位置误差系数 k_p、静态速度误差系数 k_v 和静态加速度误差系数 k_a 及稳态误差 e_{ss}。

（2）动态性能指标包括时域指标超调量 $\%$、调节时间 t_c、峰值时间 t_p 和频域指标相位裕量 γ、增益裕量 GM、截止频率 ω_c、谐振峰值 M_p、谐振频率 ω_b 及带宽频率 ω_b。
参考书，其计算公式为\(\omega_n = \omega_n \sqrt{1 - 2\zeta^2 + \sqrt{2 - 4\zeta^2 + 4\zeta^4}} \)。

【注意】

① 这些控制系统性能指标反映控制系统过渡过程的情况，在设计校正装置时，若采用时域指标，则采用根轨迹法，其实质是假定校正后的闭环系统具备一队主导共轭极点，它决定着系统的性能，属于图解方法范畴。

② 若采用频域指标，则应该使用频域法，其实质是借助校正装置来改变原系统的频率特性，从而获得期望的静态、动态性能，这也属于图解方法。

③ 若要进行精确的参数设计，则应采用计算机仿真来模拟系统的响应特性，将设计人员的分析、判断、决策和推理与计算机的快速、准确、形象结合起来，从而提高设计质量。

6.2 串联超前校正

6.2.1 相位超前校正装置

无源网络的相位超前校正装置，如图 6-2（a）所示。其传递函数为

\[
G_c(s) = \frac{R_2}{1 + R_1Cs + R_2} = \alpha \cdot \frac{T_1s + 1}{\alpha T_1s + 1}
\] (6-1)

式中，\(\alpha = \frac{R_2}{R_1 + R_2} < 1, \ T = R_1C \)。

![图 6-2 RC 超前网络](image)

图 6-2 RC 超前网络

传递函数的零点和极点形式

\[
G_c(s) = \frac{s + z}{s + p}
\]

式中，\(z = \frac{1}{T}, \ p = \frac{1}{\alpha T} \)。

- \(z \)、\(-p \) 分别为校正装置的零点和极点，它们在复平面上的位置如图 6-2（b）所示。由于其传递函数中的分子项微分环节时间常数比分母的惯性环节时间常数要大，即零点比极点更靠
第 6 章 控制系统的分析与校正

近虚轴，对输入信号具有明显的微分作用，故该装置又称为微分校正装置。

微分校正装置的频率特性为

$$G_c(j\omega) = \alpha \cdot \frac{j\omega + 1}{j\alpha T \omega + 1}, \quad \alpha < 1$$ (6-2)

当 \alpha 取不同值时，其对数频率特性曲线如图 6-3 所示。

由此可见，该频率特性的主要特点是在所有频率下，相频曲线具有正位移，这表明网络在正弦信号作用下的稳态输出电压，在相位上超前于输入，故微分校正装置通常称为相位超前校正装置。计算相位超前校正装置的相频特性，可以得到最大超前相位角 \phi_m 及出现最大超前相位角所对应的频率 \omega_m，其值分别为

$$\phi_m = \tan^{-1}\left(\frac{1 - \alpha}{2\sqrt{\alpha}}\right)$$ (6-3)

$$\omega_m = \frac{1}{\sqrt{\alpha T}} \quad \text{或} \quad \omega_m = \sqrt{\frac{1}{T \alpha T}}$$ (6-4)

可以证明，它正好位于对数频率特性两个转折频率 \frac{1}{T} 和 \frac{1}{\alpha T} 的几何中心。

将式 (6-3) 进行变换，得

$$\alpha = \frac{1 - \sin \phi_m}{1 + \sin \phi_m} \quad \text{或} \quad \frac{1}{\alpha} = \frac{1 + \sin \phi_m}{1 - \sin \phi_m}$$ (6-5)

按式 (6-5) 绘制出的曲线如图 6-4 所示。

由图 6-3 可见，超前网络的对数频率特性在频率 \frac{1}{T} ~ \frac{1}{\alpha T} 范围内的斜率为 20dB/dec。而低频段的对数幅频特性为 20\lg \alpha < 0，即呈现低频衰减。将超前网络串联于系统的前向通路时，会使系统的开环增益减小，稳态误差增大。因此，为了保证稳态误差不变，就要在加入超前网络的同时，串联一个放大倍数为 \frac{1}{\alpha} 的放大器。经过这种增益补偿后，相位超前校正装置的频率特性
变为

\[
\frac{1}{\alpha} G_c(j\omega) = \frac{jT\omega + 1}{j\alpha T\omega + 1}
\]

（6-6）

图 6-4 \(\varphi_m\) 与 \(\alpha\) 的关系曲线

图 6-5 给出了经增益补偿后超前网络的对数幅频特性曲线，其相频特性曲线不变。由图可知，当 \(\omega > \frac{1}{T}\) 时，超前网络高频部分的对数幅频特性为 \(20\lg \frac{1}{\alpha} > 0\)，当 \(\omega = \omega_m = \frac{1}{\sqrt{\alpha T}}\) 时，对数幅频特性为

\[
L(\omega_m) = 10\lg \frac{1}{\alpha}
\]

（6-7）

\(\alpha\) 值的选取不宜过小，否则，超前网络的衰减严重，系统作增益补偿时较为困难。并且 \(\alpha\) 越小，高频噪声的影响也越大。因此，通常把 \(\alpha\) 值限制在 0.5 以内，一般取为 \(0.05 \leq \alpha \leq 0.25\)。

图 6-5 增益补偿后超前网络的对数幅频特性曲线

6.2.2 相位超前校正装置的作用

对于已补偿低频衰减的相位超前校正装置：

\[
G_c(j\omega) = \frac{jT\omega + 1}{j\alpha T\omega + 1}, \quad \alpha < 1
\]

（6-8）
其作用可以用如图 6-6 所示来说明。

设单位负反馈系统未校正时的开环对数幅频特性、相频特性、截止频率、相角稳定裕量分别为 \(L_0 \)、\(\varphi_0 \)、\(\omega_c \) 和 \(\gamma_0 \)，校正装置的对数幅频特性和相频特性为 \(L_k \)、\(\varphi_k \)，校正后系统的对数幅频特性和相频特性为 \(kL \)、\(k\varphi \)。

从图 6-6 中可以看出，原系统的对数幅频特性在截止频率附近的斜率为 \(-40\text{dB/dec}\) ，相角稳定裕量 \(\gamma_0 \) 很小，系统的平独性差。

在原系统串联加入超前校正，校正环节的转折频率 \(\frac{1}{T} \) 及 \(\frac{1}{\alpha T} \) 分别设在原截止频率 \(\omega_c \) 的两侧，\(\omega_m \) 为校正环节出现最大正相角时的频率。

由于正斜率的作用，校正后系统对数幅频特性中段斜率变为 \(-20\text{dB/dec}\) ，截止频率增大到 \(\omega'_c \)；而由于正相移的作用，截止频率附近的相位明显上移，使系统具有较大的稳定裕量。因此，超前校正装置的作用如下：

（1）使校正后系统的截止频率增大，带宽变宽，提高了系统响应的速度，增强了快速性。

（2）使校正后系统的相位裕量增大，提高了系统的相对稳定性。为了得到最佳相位超前效
果，通常选取 ω_m 位于校正后系统的截止频率处（或附近）。

采用未经增益补偿的相位超前校正环节，其低频段衰减使系统的稳态性能降低。但选用具有增益补偿的相位超前校正环节，其高频段高频特性的上移，会削弱抗高频干扰的能力。

【注意】

① 相位超前校正对提高系统稳态精度的作用很小。
② 若要改善稳定性和过渡过程性能指标，则必须用相位滞后校正。

6.2.3 校正方法

下面举例说明相位超前校正的步骤。
【例 6-1】设单位负反馈未校正系统的开环传递函数为

$$G_0(s) = \frac{K}{s(0.25s + 1)(0.01s + 1)}$$

要求校正后系统的速度误差系数为 50，相位稳定裕量为 45°。试确定串联相位超前校正的传递函数。

【解】根据要求 $K_v = 50$，可得 $K = k_v = 50$。

（1）绘制 $K = 50$ 时未校正系统的开环对数幅频特性 L_0 和相频特性 φ_0，如图 6-7 所示。由此可以查出未校正系统 $\omega_c = 13.8(s^{-1})$，$\gamma(\omega_c) = 8°$。

（2）选用式（6-6）所示的相位超前装置，其参数为 α、T。要使系统满足相位裕量 $\gamma(\omega'\alpha) = 45°$，超前校正网络的最大超前角 φ_m 需要满足：

$$\varphi_m \geq 45° - 8°$$

由于校正后新的截止频率 $\omega'\alpha > \omega_c$，对应于 $\omega'\alpha$ 系统的相位裕量显然小于 45°，所以需要更大
的超前角，试取 $\varphi_{\text{max}} = 55^\circ$。

（3）根据式（6-5）解得

$$\frac{1}{\alpha} = \frac{1 + \sin \varphi_m}{1 - \sin \varphi_m} = \frac{1 + \sin 55^\circ}{1 - \sin 55^\circ} = 10.1$$

把求得的 $\frac{1}{\alpha}$ 代入式（6-7），得

$$L(\omega_m) = 10 \lg \frac{1}{\alpha} = 10 \lg 10.1 = 10.05 \text{dB}$$

由图 6-7 可知，$L_0 = -10.05 \text{dB}$ 时，$\omega = 24.7 \text{s}^{-1}$。若 $\omega_m = \omega'_m = 24.7 \text{s}^{-1}$。校正后系统的相位裕量 $\gamma'(\omega_c) = 50^\circ$，满足要求。

（4）由 $\frac{1}{\alpha} = 10.1$，$\omega_m = \frac{1}{\sqrt{T\alpha}} = 24.7 \text{s}^{-1}$，可计算校正装置的参数 $\alpha = 0.099$，$T = 0.1287$。校正装置的传递函数为

$$G_c(s) = \frac{T_s + 1}{\alpha T_s + 1} = \frac{0.1287s + 1}{0.01274s + 1} \tag{6-9}$$

【注意】

① 首先按照指定的稳态误差要求，确定系统开环放大系数 K，绘制未校正系统的对数频率特性。

② 根据性能指标的要求，选择超前网络的最大超前角 φ_{max}。

③ 计算校正后系统的性能指标，并设计校正装置。

④ 绘制校正后系统的开环对数频率特性，检查其项目指标是否满足设计要求。若不满足，则应重新选取 φ_{max}，重复以上的设计过程。

⑤ 串联相位超前校正具有一定适应范围的。由图 6-4 看出，随着 $\frac{1}{\alpha}$ 的增大，最大超前相位角 φ_{max} 也越大，校正装置越不容易实现，通常对 $\frac{1}{\alpha}$ 取 4~20。

⑥ 若要求超前相位超过 70° ~ 80° 时，应考虑使用两个以上的超前校正装置。

⑦ 若未校正系统在截止频率 ω_c 附近的相位特性下降迅速，超前网络的正相位不足以使其补偿到要求的数据，则超前网络的作用不明显。这时不宜采用这种校正方式，应考虑其他的校正方式。

6.3 串联滞后校正

6.3.1 相位滞后校正装置

无源网络滞后环节的校正装置如图 6-8（a）所示。其传递函数为

$$G_c(s) = \frac{R_cCs + 1}{(R_c + R_s)Cs + 1} = \frac{\alpha Ts + 1}{Ts + 1} = \frac{\alpha (s + z)}{s + p} \tag{6-10}$$
式中，$\alpha = \frac{R_2}{R_1 + R_2} < 1$, $T = (R_1 + R_2)C$, $z = \frac{1}{\alpha T}$, $p = \frac{1}{T}$。

$$T_G(j\omega) = \frac{1 + j\alpha T \omega}{1 + j\alpha T \omega}$$ \hspace{1cm} \text{式(6-11)}$$

其对数频率特性曲线如图6-9所示，图中 $\omega_1 = \frac{1}{T}$，为惯性环节的转折频率， $\omega_2 = \frac{1}{\alpha T}$，为一阶微分环节的转折频率。因为 $\alpha < 1$，网络具有滞后相位，所以该装置又称为相位滞后校正装置。

从图6-9可以看出，相位滞后校正装置高频段的幅频特性具有较大的衰减，在频率 $\frac{1}{T} \sim \frac{1}{\alpha T}$ 范围内，幅频特性的斜率为 -20dB/dec。相位滞后角及相应的频率仍可按式(6-3)和式(6-4)计算。

将相位滞后校正装置与前面所介绍的相位超前校正装置进行比较，可以看出，相位超前校正装置是一个高通滤波器，相位滞后则是一个低通滤波器。
6.3.2 相位滞后校正装置的作用

相位滞后校正装置的作用如图6-10所示加以说明。

设单位负反馈原有的开环对数幅频特性和对数相频特性为 \(L_0, \varphi_0\)。可以看出，\(L_0\)在中频段截止频率\(\omega_c\)附近为\(-40\text{dB/dec}\)，系统动态响应的平稳性很差。从相频特性曲线看，系统接近于临界稳定。

在原系统中串联如式（6-10）所示的相位滞后校正装置时，为了不对系统的相位裕量产生不良影响，通常使校正装置产生相位滞后的最大频率\(\omega_m\)处于未校正系统的低频段，即校正环节的两个转折频率\(\frac{1}{T}\)和\(\frac{1}{aT}\)均设置在远离\(\omega_c\)的低频段。校正后系统的开环对数幅频特性曲线和相频特性曲线分别为\(L_k, \varphi_k\)。

由图6-10知，由于校正装置的高频衰减作用，校正后系统的截止频率下降，通频带变窄，降低了系统的快速性。但因为在新截止频率附近系统的相位裕量增大，提高了系统的相对稳定性。因此，相位滞后校正是以牺牲快速性换取了系统的稳定性。

相位滞后校正要确定校正装置的参数\(a\)和\(T\)。为减小校正装置的相位滞后对中频段特性的影响，可取校正后系统的截止频率\(\omega_c' \geq \frac{10}{aT}\)。当取\(\omega_c' = \frac{10}{aT}\)时，校正装置在该处产生的相位滞后与\(\frac{1}{a}\)的关系，如图6-11所示。由图可知，若\(a\)的取值太小，系统的快速性将下降太多，故\(a\)的取值不应小于0.05，一般选择\(a = 0.1\)。

![图6-10 系统的滞后串联校正](image1)

![图6-11 在\(\omega_c' = \frac{10}{aT}\)处产生的相位滞后与\(a\)的关系曲线](image2)
6.3.3 校正方法

【例 6-2】控制系统被控对象的传递函数为

\[G_0(s) = \frac{K}{s(0.1s + 1)(0.2s + 1)} \]

要求校正后系统的速度误差系数为 30，相位稳定裕量 \(\gamma \geq 40^\circ \)。试确定串联相位滞后校正装置的传递函数 \(G_c(s) \)。

【解】(1) 因为系统属于 I 系统，根据静态精度指标要求，所以 \(K = 30 \)。绘制未校正系统的对数频率特性曲线，如图 6-12 所示。\(L_0 \), \(\varphi_0 \) 分别为幅频特性和相频特性。

(2) 为使校正后系统具有 \(\gamma \geq 40^\circ \) 的相位裕量，再考虑到相位滞后校正后，在截止频率处将有 \(5^\circ \) 左右的相位滞后影响，从 \(\varphi_0 \) 上找到对应回角 \(-180^\circ + (40^\circ + 5^\circ) = -135^\circ \) 处的频率 \(\alpha' \approx 2.8(s^{-1}) \)，将 \(\alpha' \) 作为校正后的截止频率。

(3) 在 \(L_0 \) 上查出相对应于 \(\alpha' \) 时的对数幅值为 19.1dB。为使校正后系统的对数幅值在 \(\alpha' \) 处有 0dB 则滞后网络产生的幅值衰减量应为 19.1dB，故可由 \(20 \log \alpha = -19.1 \) dB 计算出 \(\alpha = 0.11 \)。

(4) 取相位滞后校正环节的转折频率

\[\omega_2 = \frac{1}{\alpha T} = \frac{1}{10} \alpha', \quad \frac{1}{\alpha T} = 0.28(s^{-1}) \]

求得 \(T = 32.47(s) \)，以及另一个转折频率 \(\alpha_1 = \frac{1}{T} = 0.03(s^{-1}) \)

(5) 校正装置的传递函数为

\[G_c(s) = \frac{\alpha Ts + 1}{T s + 1} = \frac{3.37s + 1}{32.47s + 1} \]

校正前与校正后的开环系统的对数幅相频率特性曲线如图 6-12 所示，其中，\(G(s) = G_0(s)G_c(s) \)。

图 6-12 串联相位滞后校正
【注意】
① 设计相位滞后校正装置的步骤，应该先画出满足稳态精度要求的未校正系统的开环对数频率特性，并查出\(\alpha_k \)、\(\gamma \)的数值。
② 根据要求的相位裕量，确定校正后系统的截止频率\(\alpha' \)。
③ 根据原系统应衰减的分贝数，以及按滞后校正后的转折频率应远离校正后截止频率的原则，确定校正装置的传递函数\(G_c(s) \)。

6.4 串联滞后-超前校正

6.4.1 相位滞后-超前校正装置

无源网络的相位滞后-超前校正装置，如图 6-13（a）所示。传递函数为
\[
G_c(s) = \frac{(R_1C_1s + 1)(R_2C_2s + 1)}{(R_1C_1s + 1)(R_2C_2s + 1) + R_1R_2s}
\]
设\(T_1 = R_1C_1 \)，\(T_2 = R_2C_2 \)，\(T_{12} = R_1C_2 \)以及\(T_1 + T_2 + T_{12} = \frac{T_1}{\beta} + \beta T_2 \)，\((\beta > 1) \)。则上式可改写成因式乘积形式:
\[
G_c(s) = \frac{(T_1s + 1)(T_2s + 1)}{(\frac{T_1}{\beta}s + 1)(\beta T_2s + 1)}
\]

根据\(T_1 + T_2 + T_{12} = \frac{T_1}{\beta} + \beta T_2 \)，\((\beta > 1) \)，得
\[
\beta = \frac{T_1 + T_2 + T_{12} + \sqrt{(T_1 + T_2 + T_{12})^2 - 4T_1T_2}}{2T_2}
\]
若满足\(\beta \gg 1 \)，则可近似得到
\[
T_{12} = (\beta - 1)T_2 - T_1
\]
若把传递函数表示为\(G_c(s) = G_1(s)G_2(s) \)，其中
\[G_1(s) = \frac{T_1 s + 1}{\beta s z_1} = \beta s + p_1, \quad G_2(s) = \frac{T_2 s + 1}{\beta T_2 s + 1} = \frac{1}{\beta s} + p_2 \]

式中，\(z_1 = \frac{1}{T_1} \)，\(p_1 = \beta \frac{1}{T_1} \)，\(z_2 = \frac{1}{T_2} \)，\(p_2 = \frac{1}{\beta T_2} \)

图6-13（b）给出了该无源网络的零点和极点位置，可见，\(G_1(s) \)的零点比极点更接近原点，具有微分校正装置的特性。\(G_2(s) \)的极点比零点更接近原点，具有积分校正装置的特性。故图6-13（a）无源网络又称为积分-微分校正装置。

相位滞后-超前校正装置的频率特性为

\[
G(j\omega) = \frac{(jT_1\omega + 1)(jT_2\omega + 1)}{(j\beta\omega + 1)(j\beta T_2\omega + 1)}
\]

（6-13）

其对数频率特性曲线如图6-14所示。由图知，当\(\omega = \omega_t = \frac{1}{\sqrt{T_1 T_2}} \)时，相位为零。在\(\omega < \omega_t \)的频段范围内，频率特性具有负斜率、负相位，起滞后校正作用；在\(\omega > \omega_t \)的频段范围内，频率特性具有正斜率、正相位，起超前校正作用。

若令\(\frac{T_2}{T_1} > 10 \)，则可近似求出最大滞后相位角和最大超前相位角：

\[
\phi_{\min} \approx -\arcsin \frac{\beta - 1}{\beta + 1} \quad \text{(6-14)}
\]

\[
\phi_{\max} \approx \arcsin \frac{\beta - 1}{\beta + 1} \quad \text{(6-15)}
\]

图6-14 滞后-超前网络的对数频率特性曲线

6.4.2 相位滞后-超前校正装置的作用

引入相位超前校正可以扩大频带宽度，提高系统的快速性和增加系统的稳定裕量；而引入相位滞后校正，可以提高系统的稳态精度和改善系统的稳定性，但使系统频带缩小，系统响应变慢。因此，当用串联超前或串联滞后两种校正方式对系统进行校正，若不能满足给定指标，或实现困难时，可以考虑采用滞后-超前校正。滞后-超前校正兼有滞后、超前两种校正的优点。
6.4.3 校正方法

【例 6-3】若单位负反馈控制系统的开环传递函数为
\[G_0(s) = \frac{K}{s(0.2s+1)(0.1s+1)} \]
试设计一个串联校正装置，使系统满足指标 \(k_c = 40 \), \(\omega_c \geq 6s^{-1} \), \(\gamma = 30^\circ \sim 60^\circ \)。

【解】（1）根据稳态精度的要求，得 \(K = 40 \)，未校正系统的开环对数频率特性，如图 6-15 所示实线部分。查得 \(\omega_c = 11s^{-1} \), \(\gamma = -23^\circ \)，可知系统不稳定。

（2）确定校正装置滞后部分的参数。由实线曲线部分看出，若用滞后部分将未校正系统的中、高频段衰减12.6dB，则 \(\omega_c = 5.5s^{-1} \), \(\gamma = 13^\circ \)。这时截止频率接近要求值，而相位裕量不足，可通过超前部分校正使相位裕量达到要求。因此选 \(\omega_c = 5.5s^{-1} \)，这时滞后部分参数为
\[\omega_2 = \frac{1}{T_2} = 0.1 \omega_c = 0.1 \times 5.5 = 0.55(s^{-1}) \]
\[T_2 = \frac{1}{0.55} = 1.82 \]

滞后部分的传递函数为
\[G_{c1}(s) = \frac{\omega_c s + 1}{\beta \omega_c s + 1} = \frac{1.82s + 1}{7.77s + 1} \]

绘制滞后校正后的开环对数频率特性如图 6-15 的虚线所示。由曲线查出 \(\omega_c = 5.52s^{-1} \), \(\gamma = 9^\circ \)。

（3）确定校正装置超前部分的参数。从曲线（虚线）可知，在 \(\omega = 5s^{-1} \) 处，对数幅频特性的斜率由 \(-20dB/dec\) 变成 \(-40dB/dec\)。若将超前部分的第一个转折频率选为 \(\omega_c = \frac{1}{T_1} = 5s^{-1} \)，则
自动控制原理

-20dB/dec 斜率的直线将延长，并以此斜率穿过 0dB 线，使系统相位裕量增加。因此选取
\[\omega_n = 5s^{-1}, \quad T_1 = \frac{1}{5} = 0.2s \]。
超前部分的第二个转折频率为
\[\frac{\beta}{T_i} = 5 \times 4.27 = 21.35(s^{-1}), \quad \frac{1}{T_i} = \frac{1}{21.35} = 0.0468(s) \]
得超前校正部分

\[G_{c_2}(s) = \frac{T_is + \frac{0.2s + 1}{0.0468s + 1}}{1} \] \(6-17 \)

滞后-超前网络的传递函数为

\[G_c(s) = G_{c_1}(s)G_{c_2}(s) = \frac{(1.82s + 1)(0.2s + 1)}{(7.77s + 1)(0.0468s + 1)} \] \(6-18 \)

（4）校正后开环系统对数频率特性曲线如图 6-15 点画线所示。查出此时的截止频率 \(\omega_c = 7.2s^{-1} \), \(\gamma = 32^\circ \), 满足要求。

【注意】
设计滞后-超前校正网络的步骤:
① 画出满足稳定精度指标要求的未校正系统开环对数频率特性曲线，查出 \(\omega_n, \gamma \) 的数值。
② 按滞后校正的方法确定校正装置滞后部分参数。
③ 保证对数幅频特性在 0dB 附近的斜率为 -20dB/dec，确定超前部分参数。
④ 绘制校正后系统开环对数频率特性，并检验系统指标。若不满足要求，则重复上述步骤。

6.5 PID 校正

6.1～6.4 节介绍了几种串联校正方法对系统进行校正设计外，在实际控制系统设计中，常常采用 PID 控制器对系统进行校正。PID 控制器可由运算放大器构成的有源网络实现。在数字控制系统中，可由软件实现。PID 控制器的传递函数可表示为

\[G_c(s) = K_p + \frac{K_i}{s} + K_d s \] \(6-19 \)

式中， \(K_p, K_i, K_d \) 分别为比例、积分、微分环节参数。

控制系统的结构图如图 6-16 所示。合理的选择系统前向通路上控制器 \(G_c(s) \) 的形式和参数，使系统能全面满足静态与动态性能指标。

![控制系统结构图](image.png)
6.5.1 比例积分（PI）控制器

PI 控制器的传递函数为

\[G_c(s) = K_p + \frac{K_i}{s} = K_p \left(1 + \frac{1}{\tau_i s}\right) = K_p \left(\frac{\tau_i s + 1}{\tau_i s}\right) \] \hspace{1cm} (6-20)

式中，\(\tau_i = \frac{K_p}{K_i} \)

如图 6-17 所示，是 PI 控制器的对数频率特性曲线，为了使 PI 控制器的相位滞后对系统中频段的影响变小，转折频率 \(\frac{1}{\tau_i} \) 应尽量减小。当 \(\omega >> \frac{1}{\tau_i} \) 时，相位为零。

![图 6-17 PI 控制器的伯德图](image)

如图 6-18 所示，\(L_0 \) 是原系统的对数幅频特性，\(L_c \) 是 PI 控制器的对数幅频特性，\(L_k \) 是校正后系统的对数幅频特性。可以看出，PI 控制器的控制作用类似于相位滞后校正环节。PI 控制器对系统的影响有如下两点:

![图 6-18 校正前与后，系统及校正装置的对数幅频特性](image)
(1) 可以改善系统的稳态性能，特别是当被控对象是 0 型系统时，使用 PI 控制器后，能使系统变成 I 型系统。

(2) 加入 PI 控制器后，使系统截止频率 ω_c 减小，因而调节时间增加，使中频段斜率变为 -20dB/dec，平稳性增加。

6.5.2 比例微分 (PD) 控制器

PD 控制器的传递函数为

$$G_c(s) = K_p + K_d s = K_p \left(\frac{K_d}{K_p} s + 1 \right) = K_p (\tau_d s + 1)$$ \hspace{1cm} (6-21)

如图 6-19 所示 PD 控制器的伯德图。设 PD 控制器的增益 $K_p = 1$，当频率 $\omega << \frac{1}{\tau_d}$ 时，对数幅频特性为 0dB，相位为 0°；当 $\omega >> \frac{1}{\tau_d}$ 时，对数频率特性为 $+20\text{dB/dec}$，相位为 90°。

如图 6-20 所示，表示加入 PD 控制器后，对原系统的影响。可以看出，PD 控制器的控制作用相当于相位超前校正环节。PD 控制器对系统的影响如下：
（1）使系统截止频率 ω_c 增加，系统的调节时间减小。
（2）增加了系统的相位稳定裕量。

6.5.3 比例积分微分（PID）控制器

PID 控制器的传递函数为

$$G_c(s) = K_p + \frac{K_i}{s} + K_d s = (1 + K_d s) \left(K_p' + \frac{K_i'}{s} \right)$$ \hspace{1cm} (6-22)

从式 (6-21) 可以看出，PID 控制器的传递函数可以表示为 PD 控制器与 PI 控制器的串联，其控制效果可视为 PD 控制器与 PI 控制器的综合。

习 题

6-1 设 I 型系统的单位负反馈控制系统原有部分的开环传递函数为

$$G_0(s) = \frac{K}{s(s+1)}$$
要求设计串联校正装置，使系统具有 $K = 12$ 和 $\gamma = 40^\circ$ 的性能指标。

6-2 设一单位负反馈控制系统的开环传递函数为

$$G_k(s) = \frac{K}{s}$$(0.1s + 1)$$
要求系统的稳态误差 $k_s = 100s^{-1}$，相位裕量 $\gamma = 55^\circ$，增益裕量 $G.M. \geq 10$。试确定该系统的校正装置。

6-3 如图 6-21 所示的控制系统由三个环节串联而成，图中给出参数为

$$G_1(s) = \frac{K}{1 + T_1 s}, \quad G_2(s) = \frac{K}{1 + T_2 s}, \quad G_3(s) = \frac{K}{1 + T_3 s}$$

$T_1 = 5s$, $T_2 = 0.5s$, $T_3 = 0.05s$, $K = 40$。
要求采用超前校正，校正后的系统相位裕量 $\gamma = 50^\circ$。

6-4 设单位负反馈控制系统的开环传递函数为

$$G_k(s) = \frac{1}{s^2(0.01s + 1)}$$

试设计校正系统满足：$k_s = 100s^{-2}$, $M_p \leq 1.3$, $\omega_h = 15s^{-1}$。

6-5 已知未校正系统的原传递函数为

$$G_0(s) = \frac{K}{s(s+2)(s+6)}$$

试设计串联滞后校正装置，满足：$K \geq 180$, $\gamma > 40^\circ$, $3s^{-1} < \omega_k < 5s^{-1}$。

6-6 某单位负反馈的开环传递函数为

$$G_k(s) = \frac{K}{s(s+1)(0.22s+1)}$$

试设计串联校正装置，使系统满足：$K \geq 5$, $\gamma \geq 40^\circ$, $\omega_k \geq 0.4s^{-1}$。
离散控制系统

教学要求与学习目标

（1）掌握控制系统采样的概念及其作用。
（2）掌握Z变换的公式及其几种基本的方法。
（3）了解离散系统稳定性分析的基本方法。

知识要点

（1）采样的概念和作用：模拟信号和数字信号、采样定理。
（2）Z变换：Z变换的定义、性质和基本方法。
（3）离散系统的稳定性分析：线性离散系统稳定的充分必要条件、劳斯判据。
第7章 离散控制系统

7.1 引言

自动控制系统发展至今，数字计算机作为补偿装置或控制装置越来越多的应用到控制系统中。数字计算机中处理的信号是离散的数字信号。所谓离散信号，是指定义在离散时刻点上的信号，连续信号经过等间隔时间采样后就变成离散时间信号。数字信号是指由二进制数表示的信号，如计算机中的信号就是数字信号。数字信号的取值只能是有限个离散的数值。如果一个系统中的变量有离散时间信号，就把这个系统称为离散时间系统，简称离散系统。若一个系统中的变量有数字信号，则这样的系统称为数字控制系统。图7-1为典型的计算机控制系统框图，计算机控制系统是最常见的离散系统和数字控制系统。计算机工作在离散状态，控制对象和测量元件工作在模拟状态。偏差信号 $e(t)$ 是模拟信号，经过 A/D 转换成离散的数字信号 $e^*(t)$ 输入计算机。计算机按照一定的控制规律处理输入信号，完成计算器的功能。计算机的输出信号 $u^*(t)$ 为离散数字信号，经过 D/A 转换成模拟信号 $u_h(t) = u_h(t)$ 输入控制对象，使其按预定方式工作。将如图7-1所示中的 A/D 转换器由一个采样开关代替，D/A 转换器由采样开关和保持器代替（见图7-2）。在量化误差可以忽略的情况下，计算机控制系统可以看作离散控制系统。

![图7-1 计算机控制系统框图](image1)

![图7-2 离散控制系统](image2)

7.2 采样系统

在离散控制系统中，数字计算机只能处理离散的数字信号，而系统中的其余元件处理模拟信号，因此在数字计算机与其余元件之间需要进行信号转换。信号经过 A/D 转换，变成离散的数字信号输入计算机，而计算机输出的离散数字信号经过 D/A 转换，变成模拟信号输入其余元件。在分析离散控制系统时，假定输入计算机和从计算机输出的每一个数字量之间的时间间隔为 T，称为采样时间，$1/T$ 为采样频率，单位为 Hz。因此，在图7-3中，偏差信号 $e^*(t)$ 即式（7-1）为离散信号，该信号实际上是由二进制表示的数字信号，通常为 8 位、10 位、12 位或 16 位数字信号。若数字信号的位数为 N，则其最小单位如式（7-2）所示。
自动控制原理

图 7-3 采样过程

\[e^*(t) = \sum_{k=0}^{\infty} e(kT)\delta(t-kT) \quad (7-1) \]

\[q = \frac{1}{2^N} \quad (7-2) \]

式（7-2）中，q 称为量化单位。可以看出量化会带来一定的误差，q 越小，量化误差就越小。在分析离散系统的特性时，通常忽略量化误差。图 7-3 所示是模拟信号经过采样后变换为离散数字信号的过程，经过采样后，离散信号只在 kT 时刻才有意义，而在其余时刻无意义。

计算机的输出信号通过 D/A 变换，变成模拟信号。D/A 变换首先将计算机中的数字信号变换成模拟电压值，然后在每个采样间隔内保持输出信号的值。D/A 变换通常采用零阶保持器，它将采样时刻 kT 时的电压或电流值保持到下一个采样时刻 (k + 1)T 到来之前。若经零阶保持器保持之后，D/A 转换器输出的模拟信号记为 x_h(t)，则

\[x_h(kT + \tau) = x(kT), \quad 0 < \tau < T \quad (7-3) \]

图 7-4 所示为零阶保持器的输出特性，可以看出每个采样时刻的离散信号经过零阶保持器都保持到下一个采样时刻到来之前，保持时间为一个采样周期，x_h(t) 为阶梯信号。

从零阶保持器的特性可以得出，其单位冲激响应是幅值为 1，宽度为 T 的矩形脉冲，表示为

\[g_h(t) = 1(t) - 1(t-T) \quad (7-4) \]

对 g_h(t) 进行拉普拉斯变换，可得零阶保持器的传递函数：

\[H_0(s) = \frac{1}{s} - \frac{e^{-Ts}}{s} = \frac{1-e^{-Ts}}{s} \quad (7-5) \]

由采样定理可知，若信号的频率分量中最大频率为 \(\omega \)，则采样频率为 \(1/T > 2\omega \)，才能保证信号不失真地进行 A/D 和 D/A 转换。在控制系统中，通常要求采样频率为系统闭环带宽的 20 倍或 20 倍以上。
7.3 Z变换

7.3.1 Z变换

在分析线性连续系统时，使用拉普拉斯变换，对离散信号

$$x^*(t) = \sum_{k=0}^{\infty} x(kT)\delta(t-kT)$$

进行拉氏变换，得

$$X^*(s) = \sum_{k=0}^{\infty} x(kT)e^{-skT}$$ (7-6)

令 $$z = e^{sT}$$，得

$$X(z) = \sum_{k=0}^{\infty} x(kT)z^{-k}$$ (7-7)

$$X(z)$$ 称为离散时间函数——脉冲序列 $$x^*(t)$$ 的 Z 变换，记为

$$X(z) = Z[x(t)] = Z[x^*(t)]$$ (7-8)

可以看出，Z变换是离散信号进行拉普拉斯变换的一种表示方法。常用的Z变换方法有级数求和法和部分分式法。

1. 级数求和法

根据 Z 变换的定义，将连续信号 $$e(t)$$ 按周期 T 进行采样，将采样点处的值代入式 (7-7)，可得

$$E(z) = e(0) + e(T)z^{-1} + e(2T)z^{-2} + \cdots + e(nT)z^{-n} + \cdots$$

再求出上式的闭合形式，即可求得 E(z)。

【例 7-1】对连续时间函数

$$e(t) = \begin{cases} a^t, & t \geq 0 \\ 0, & t < 0 \end{cases}$$

按周期 T = 1 进行采样，可得

$$e(n) = \begin{cases} a^n, & n \geq 0 \\ 0, & n < 0 \end{cases}$$

试求 E(z)。

【解】按 (7-7) Z变换的定义

$$E(z) = \sum_{n=0}^{\infty} e(nT)z^{-n} = \sum_{n=0}^{\infty} (az^{-1})^n = 1 + az^{-1} + (az^{-1})^2 + (az^{-1})^3 + \cdots$$

若 $$|z| > |a|$$，则说该无穷级数是收敛的，利用等比级数求和公式，可得闭合形式:

$$E(z) = \frac{z}{z-a}, \quad |z| > |a|$$
2. 部分分式法（查表法）

已知连续信号 \(e(t) \) 的拉普拉斯变换 \(E(s) \)，将 \(E(s) \) 展开成部分分式之和:

\[
E(s) = E_1(s) + E_2(s) + \cdots + E_n(s)
\]

每一个部分分式 \(E_i(s) \) \((i = 1, 2, \cdots, n)\) 都是 \(Z \) 变换表中所对应的标准函数，其 \(Z \) 变换即可查表得

\[
E(z) = E_1(z) + E_2(z) + \cdots + E_n(z)
\]

【例 7-2】已知连续函数的拉普拉斯变换为

\[
E(s) = \frac{s + 2}{s^2(s + 1)}
\]

试求相应的 \(Z \) 变换 \(E(z) \)。

【解】将 \(E(s) \) 展成部分分式:

\[
E(s) = \frac{2}{s^2} - \frac{1}{s} + \frac{1}{s + 1}
\]

对上式逐项查 \(Z \) 变换表，可得

\[
E(z) = \frac{2Tz}{(z - 1)^2} - \frac{z}{z - 1} + \frac{z}{z - e^{-T}}
\]

\[
= \frac{(2T + e^{-T} - 1)z^2 + [1 - e^{-T}(2T + 1)]z}{(z - 1)^2(z - e^{-T})}
\]

常用函数的 \(Z \) 变换表见附录 B 常用函数的 \(Z \) 变换表。由表可见，这些函数的 \(Z \) 变换都是 \(z \) 的有理分式。

7.3.2 \(Z \) 变换的基本定理

应用 \(Z \) 变换的基本定理，可以使 \(Z \) 变换的应用变得简单方便，下面介绍常用的几种 \(Z \) 变换定理。

1. 线性定理

若 \(E_1(z) = Z[e_1(t)], E_2(z) = Z[e_2(t)], a, b \) 为常数，则

\[
Z[ae_1(t) \pm be_2(t)] = aE_1(z) \pm bE_2(z)
\]

（7-9）

上式表明，\(Z \) 变换是一种线性变换，其变换过程满足齐次性与叠加性。

2. 实数位移定理

实数位移是指整个采样序列 \(e(nT) \) 在时间轴上左右平移若干采样周期，其中向左平移 \(e(nT + kT) \) 为超前，向右平移 \(e(nT - kT) \) 为滞后。实数位移定理表示如下:

若函数 \(e(t) \) 是可以进行 \(Z \) 变换的，其 \(Z \) 变换为 \(E(z) \)，则有滞后定理

\[
Z[e(t - kT)] = z^{-k}E(z)
\]

（7-10）

以及超前定理

\[
Z[e(t + kT)] = z^k[E(z) - \sum_{n=0}^{k-1} e(nT)z^{-n}]
\]

（7-11）

式中，\(k \) 为正整数。
显然可见，算子 z 有明确的物理意义：z^k 代表时域中的延迟算子，它将采样信号滞后 k 个采样周期。同理，z^{-k} 代表超前环节，它把采样信号超前 k 个采样周期。

实际位移定理的作用相当于拉普拉斯变换中的微分或积分定理。应用实际位移定理，可将描述离散系统的差分方程转换为 z 域的代数方程。

【例 7-3】试用实际位移定理计算滞后函数 $3(t - 5T)$ 的 Z 变换。
【解】由式 (7-10)，得

$$Z[(t - 5T)^3] = z^{-5}Z[t^3] = z^{-5} \frac{t^3}{3!}$$

$$= 6z^{-5} \frac{(z^2 + 4z + 1)}{(z - 1)^4}$$

3. 复数位移定理

如果函数 $e(t)$ 是可以进行 Z 变换的，其 Z 变换为 $E(z)$，则

$$Z[a^{\pm bt}e(t)] = E(z^a^{\pm bt})$$

【例 7-4】试用复数位移定理计算函数 t^2e^{at} 的 Z 变换。
【解】令 $e(t) = t^2$，查表可得

$$E(z) = Z[t^2] = 2Z\left[\frac{t^2}{2}\right] = \frac{T^2(z + 1)}{(z - 1)^3}$$

根据复数位移定理即式 (7-12)，得

$$Z[t^2e^{at}] = E(z^a^{at}) = \frac{T^2ze^{at}(z^{-at} + 1)}{(z^{-at} - 1)^3} = \frac{T^2ze^{at}(z + e^{at})}{(z - e^{at})^3}$$

4. 终值定理

若信号 $e(t)$ 的 Z 变换为 $E(z)$，信号序列 $e(nT)$ 为有限值 $(n = 0, 1, 2, \cdots)$，且极限 $\lim_{n \to \infty} e(nT)$ 存在，则信号序列的终值

$$\lim_{n \to \infty} e(nT) = \lim_{z \to 1} ze^a z^{-at} nT$$

【例 7-5】设 Z 变换函数为

$$E(z) = \frac{z^3}{(z - 1)(z^2 + 7z + 5)}$$

试利用终值定理确定 $e(nT)$ 的终值。
【解】由终值定理即式 (7-13) 得

$$e(\infty) = \lim_{z \to 1} z^{-1}E(z) = \lim_{z \to 1} \frac{z^3}{(z - 1)(z^2 + 7z + 5)} = \lim_{z \to 1} z^{-3} = \frac{1}{13}$$

5. 卷积定理

设 $x(nT)$ 和 $y(nT)$ $(n = 0, 1, 2, \cdots)$，为两个采样信号序列，其离散卷积定义为

$$x(nT) * y(nT) = \sum_{k=0}^{n} x(kT) y[(n-k)T]$$

(7-14)
卷积定理可描述如下：在时域中，若

\[g(nT) = x(nT) * y(nT) \] \hspace{1cm} (7-15)

则在 \(z \)-域中必有

\[G(z) = X(z) \cdot Y(z) \] \hspace{1cm} (7-16)

在离散系统分析中，卷积定理是沟通时域与 \(z \)-域的桥梁。利用卷积定理可建立离散系统的脉冲传递函数。

应当注意，Z 变换只反映信号在采样点上的信息，而不能描述采样点间信号的状态。因此 Z 变换与采样序列对应，而不对应唯一的连续信号。不论什么连续信号，只要采样序列一样，其 Z 变换就一样。

7.3.3 Z 反变换

已知 Z 变换表达式 \(E(z) \)，求相应离散序列 \(e(nT) \) 的过程，称为 Z 反变换，记为

\[e(nT) = Z^{-1}[E(z)] \] \hspace{1cm} (7-17)

当 \(n < 0 \) 时，\(e(nT) = 0 \)，信号序列 \(e(nT) \) 是单边的，对单边序列常用的 Z 反变换有部分分式法，幂级数法和反演积分法。

1. 部分分式法（查表法）

部分分式法又称为查表法，根据已知的 \(E(z) \)，通过查 Z 变换表找出相应的 \(e^*(t) \)，或者 \(e(nT) \)。考虑到 Z 变换表中，所有 Z 变换函数 \(E(z) \) 在其分子上都有因子 \(z \)，因此，通常先将 \(E(z)/z \) 展开成部分分式之和，然后再将分母中的 \(z \) 乘以各分式，最后逐项查表求得反变换。

【例 7-6】设 \(E(z) \) 为

\[E(z) = \frac{10z}{(z-1)(z-2)} \]

试用部分分式法求 \(e(nT) \)。

【解】首先，将 \(E(z) \) 展开成部分分式，即

\[E(z) = \frac{10}{z-1} + \frac{10}{z-2} \]

其次，把部分分式中的每一项乘以因子 \(z \) 后，得

\[E(z) = -10 + \frac{10}{z-1} + \frac{10}{z-2} \]

查 Z 变换表得

\[Z^{-1}[\frac{z}{z-1}] = 1, \quad Z^{-1}[\frac{z}{z-2}] = 2^n \]

最后可得

\[e^*(t) = \sum_{n=0}^{\infty} e(nT) \delta(t-nT) = 10(-1+2^n) \delta(t-nT) \quad n = 0, 1, 2 \cdots \]

2. 幂级数法

Z 变换函数的无穷项级数形式具有鲜明的物理意义。变量 \(z^{-n} \) 的系数代表连续时间函数在
nT 时刻上的采样值。若 E(z) 是一个有理分式，则可以直接通过长除法，得到一个无穷项幂级数的展开式。根据 z^{-n} 的系数便可以得出时间序列 e(nT) 的值。

【例 7-7】设 E(z) 为

$$ E(z) = \frac{10z}{(z-1)(z-2)} $$

试用长除法求 e(nT) 或 e'(t)。

【解】

$$ E(z) = \frac{10z}{(z-1)(z-2)} = \frac{10z}{z^2 - 3z + 2} $$

应用长除法，用分母去除分子，即

$$ z^2 - 3z + 2 \begin{array}{c} 10z^{-1} + 30z^{-3} + 70z^{-5} + 150z^{-7} + \cdots \\ 10z \\ 10z - 30z^0 + 20z^{-1} \\ - \end{array} 30z^0 - 20z^{-1} \\ 30z^0 - 90z^{-1} + 60z^{-2} \\ - \end{array} 70z^{-1} - 60z^{-2} \\ 70z^{-1} - 210z^{-2} + 140z^{-3} \\ - \end{array} 150z^{-2} - 140z^{-3} $$

E(z) 可写成

$$ E(z) = 0z^0 + 10z^{-1} + 30z^{-2} + 70z^{-3} + 150z^{-4} + \cdots $$

因此

$$ e'(t) = 10\delta(t-T) + 30\delta(t-2T) + 70\delta(t-3T) + 150\delta(t-4T) + \cdots $$

长除法以序列的形式给出 e(0), e(T), e(2T), e(3T), \cdots 的数值，但不容易得出 e(nT) 的封闭表达形式。

3. 反演积分法（留数法）

反演积分法又称为留数法。在实际问题中遇到 Z 变换函数 E(z)，除有理分式外，也可能是超越函数。此时，无法应用部分分式法及幂级数法来求 Z 反变换，只能采用反演积分法。当然，反演积分法对 E(z) 为有理分式的情形也适用。E(z) 的幂级数展开形式为

$$ E(z) = \sum_{n=0}^{\infty} e(nT)z^{-n} \quad (7-18) $$

设函数 E(z)z^{-n} 除有限极点 z_1, z_2, \ldots, z_k 外，在 z 域上是解析的，则有反演积分公式

$$ e(nT) = \frac{1}{2\pi j} \oint_{C} E(z)z^{-n-1}dz = \sum_{i=1}^{k} \text{Res}[E(z)z^{-n}]_{z=z_i} \quad (7-19) $$

式中，Res[E(z)z^{-n}]_{z=z_i} 表示函数 E(z)z^{-n} 在极点 z_i 处的留数，留数计算方法如下：

若 z_i (i = 0, 1, 2, \ldots, k) 为单极点，则
自动控制原理

\[\text{Res}[E(z)z^{n-1}]_{z \to z_i} = \lim_{z \to z_i} [(z - z_i)E(z)z^{n-1}] \] \hspace{1cm} (7-20)

若 \(z_i \) 为 \(m \) 阶重极点，则

\[\text{Res}[E(z)z^{n-1}]_{z \to z_i} = \frac{1}{(z-1)!} \left\{ \frac{d^{m-1}}{dz^{m-1}}[(z - z_i)^m E(z)z^{n-1}] \right\}_{z=z_i} \]

【例 7-8】设 \(E(z) \) 为

\[E(z) = \frac{10z}{(z-1)(z-2)} \]

试用反演积分法求 \(e(nT) \)。

【解】根据式（7-19），得

\[e(nT) = \sum \text{Res}[\frac{10z}{(z-1)(z-2)}] \]

\[= [\frac{10z^n}{(z-1)(z-2)}, (z-1)]_{z=1} + [\frac{10z^n}{(z-1)(z-2)}, (z-2)]_{z=2} \]

\[= -10 + 10 \times 2^n = 10(-1 + 2^n) \quad n = 0, 1, 2, \ldots \]

【例 7-9】设 \(Z \) 变换函数为

\[E(z) = \frac{z^3}{(z-1)(z-5)^3} \]

试用留数法求其 \(Z \) 反变换。

【解】因为函数

\[E(z)z^{n-1} = \frac{z^{n+2}}{(z-1)(z-5)^3} \]

\(z_1 = 1 \) 是单极点， \(z_2 = 5 \) 是 2 阶重极点，极点处留数为

\[\text{Res}[E(z)z^{n-1}]_{z \to z_1} = \lim_{z \to z_1} [(z - z_1)E(z)z^{n-1}] = \lim_{z \to z_1} \frac{z^{n+2}}{(z-1)(z-5)^3} = \frac{1}{16} \]

\[\text{Res}[E(z)z^{n-1}]_{z \to z_2} = \frac{1}{(m-1)!} \left\{ \frac{d^{m-1}}{dz^{m-1}}[(z - 5)^m E(z)z^{n-1}] \right\}_{z=5} \]

\[= \frac{1}{(2-1)!} \left\{ \frac{d^{2-1}}{dz^{2-1}}[(z - 5)^2 E(z)z^{n-1}] \right\}_{z=5} \]

\[= \frac{(4n + 3)S^{n+1}}{16} \]

所以

\[e(nT) = \sum_{i=1}^{k} \text{Res}[E(z)z^{n-1}]_{z \to z_i} = \frac{1}{16} + \frac{(4n + 3)S^{n+1}}{16} + \frac{(4n + 3)S^{n+1} + 1}{16} \]

相应的采样函数

\[e^*(t) = \sum_{n=0}^{\infty} e(nT)\delta(t - nT) = \sum_{n=0}^{\infty} \frac{(4n + 3)S^{n+1} + 1}{16} \delta(t - nT) \]

\[= \delta(t) + 11\delta(t - 1) + 86\delta(t - 2) + \cdots \]
第 7 章 离散控制系统

7.4 脉冲传递函数

7.4.1 脉冲传递函数定义

设离散系统如图 7-5 所示。

如果系统的输入信号为 \(r(t) \)，采样信号 \(r^n(t) \) 的 \(Z \) 变换函数为 \(R(z) \)，系统连续部分的输出为 \(c(t) \)，采样信号 \(c^n(t) \) 的 \(Z \) 变换函数为 \(C(z) \)，那么线性定常离散系统的脉冲传递函数定义如下：在零初始条件下，系统输出采样信号的 \(Z \) 变换 \(C(z) \) 与输入采样信号的 \(Z \) 变换 \(R(z) \) 之比，记作

\[
G(z) = \frac{C(z)}{R(z)} = \frac{\sum_{n=0}^{\infty} c(nT)z^{-n}}{\sum_{n=0}^{\infty} r(nT)z^{-n}} \quad (7-21)
\]

所谓零初始条件，是指在 \(t < 0 \) 时，输入脉冲序列各采样值 \(r(-T), r(-2T), \cdots \)，以及输出脉冲序列各采样值 \(c(-T), c(-2T), \cdots \)，均为零。

式（7-21）表明，若已知 \(R(z) \) 和 \(G(z) \)，则在零初始条件下，线性定常离散系统的输出采样信号为

\[
G(nT) = Z^{-1}[C(z)] = Z^{-1}[G(z)R(z)]
\]

输出是连续信号 \(c(t) \) 的情况下，如图 7-6 所示。

可以在系统输出端虚设一个开关，如图中的虚线所示，它与输入采样开关同步工作，具有相同的采样周期。若系统的实际输出 \(c(t) \) 比较平滑，且采样频率较高，则可用 \(c^n(t) \) 近似描述 \(c(t) \)。必须指出，虚设的采样开关是不存在的，它表明脉冲传递函数所能描述的只是输出连续函数 \(c(t) \) 在采样时刻的离散值 \(c^n(t) \)。
7.4.2 串联环节的脉冲传递函数

在离散系统中，计算串联环节的脉冲传递函数需要考虑环节之间有无采样开关。

1. 串联环节之间有采样开关

如图 7-7 所示，当串联环节 $G_1(s)$ 和 $G_2(s)$ 之间有采样开关时，由脉冲传递函数定义可知

$$ D(z) = G_1(z)R(z), \quad C(z) = G_2(z)D(z) $$

其中，$G_1(z)$ 和 $G_2(z)$ 分别为 $G_1(s)$ 和 $G_2(s)$ 的脉冲传递函数，则

$$ C(z) = G_2(z)G_1(z)R(z) $$

可以得到串联环节的脉冲传递函数:

$$ G(z) = \frac{C(z)R(z)}{R(z)} = G_1(z)G_2(z) \quad (7-22) $$

式（7-22）表明，当串联环节之间有采样开关时，脉冲传递函数等于两个环节脉冲传递函数的乘积。同理可知，n 个串联环节间都有采样开关时，脉冲传递函数等于各环节脉冲传递函数的乘积。

![图 7-7 串联环节间有采样开关](image)

2. 串联环节之间无采样开关

如图 7-8 所示，当串联环节 $G_1(s)$ 和 $G_2(s)$ 之间没有理想采样开关时，系统的传递函数为

$$ G(s) = G_1(s)G_2(s) $$

由脉冲传递函数定义可知

$$ G(z) = \frac{C(z)}{R(z)} = Z\left[G_1(s)G_2(s)\right] = G_1G_2(z) \quad (7-23) $$

式 (7-23) 表明，当串联环节之间没有采样开关时，脉冲传递函数等于两个环节的连续传递函数乘积的 Z 变换。同理可知，n 个串联环节间都没有采样开关时，脉冲传递函数等于各环节的连续传递函数乘积的 Z 变换。

显然，$G_1(z)G_2(z) \neq G_1G_2(z)$，从上面的分析我们可以得出结论：在串联环节之间有无采样开关，脉冲传递函数是不相同的。
【例 7-10】 设开环离散系统如图 7-7 和图 7-8 所示， \(G_1(s) = \frac{1}{s}, G_2(s) = \frac{a}{s + a} \)，输入信号 \(r(t) = 1(t) \)，求两种系统的脉冲传递函数 \(G(z) \) 和输出的 Z 变换 \(C(z) \)。

【解】 输入 \(r(t) = 1(t) \) 的 Z 变换为

\[
R(z) = \frac{z}{z - 1}
\]

对如图 7-7 系统

\[
G_1(z) = Z\left[\frac{1}{s} \right] = \frac{z}{z - 1}
\]

\[
G_2(z) = Z\left[\frac{a}{s + a} \right] = \frac{az}{z - e^{-at}}
\]

得

\[
G(z) = G_1(z)G_2(z) = \frac{az^2}{(z - 1)(z - e^{-at})}
\]

\[
C(z) = G(z)R(z) = \frac{az^3}{(z - 1)^2(z - e^{-at})}
\]

对图 7-8 所示系统，有

\[
G_1(s)G_2(s) = \frac{a}{s(s + a)}
\]

\[
G(z) = G_1G_2(z) = Z\left[\frac{a}{s(s + a)} \right] = \frac{z(1 - e^{-at})}{(z - 1)(z - e^{-at})}
\]

\[
C(z) = G(z)R(z) = \frac{z^2(1 - e^{-at})}{(z - 1)^2(z - e^{-at})}
\]

显然，在串联环节之间有无采样开关时，其总的脉冲传递函数和输出 Z 变换是不相同的。但是，不同之处仅表现在其开环零点不同，极点仍然一样。

3. 环节与零阶保持器串联

如图 7-9 所示，当环节与零阶保持器串联时，串联环节的连续传递函数为

\[
G(s) = H_0(s)G_0(s) = \frac{1 - e^{-Ts}}{s}G_0(s) = (1 - e^{-Ts}) \frac{G_0(s)}{s}
\]

令 \(G_1(s) = G_0(s)/s \)，则

\[
G(s) = (1 - e^{-Ts})G_1(s) = G_1(s) - e^{-Ts}G_1(s)
\]

\(G(s) \) 的单位冲激响应为

\[
g(t) = L^\dagger[G(s)] = L^\dagger[G_1(s) - e^{-Ts}G_1(s)]
\]

\[
= g_1(t) - g_1(t - T)
\]
对上式进行 Z 变换可得到则环节与零阶保持器串联时的脉冲传递函数:

$$G(z) = Z\left[g(t) \right] = Z\left[g_1(t) - g_1(t - T) \right] = G_1(z) - z^{-1}G_1(z)$$

即

$$G(z) = (1 - z^{-1})Z\left[\frac{G_0(s)}{s} \right]$$

（7-24）

【例 7-11】 设离散系统如图 7-10 所示，已知

$$G_0(s) = \frac{a}{s(s + a)}$$

试求系统的脉冲传递函数 $G(z)$。

【解】 因为

$$G_0(s) = \frac{a}{s(s + a)} = \frac{1}{s} \cdot \frac{1}{s + a}$$

可得

$$Z\left[\frac{G_0(s)}{s} \right] = \frac{Tz}{(z-1)^2} - \frac{1}{a}\left(\frac{z}{z-1} - \frac{z}{z-e^{-aT}} \right)$$

$$= \frac{1}{a}\left[(e^{-aT} + aT - 1)z + (1 - aTe^{-aT} - e^{-aT}) \right]$$

$$(z-1)^2(z-e^{-aT})$$

因此，系统脉冲传递函数为

$$G(z) = (1 - z^{-1})Z\left[\frac{G_0(s)}{s} \right] = \frac{1}{a}\left[(e^{-aT} + aT - 1)z + (1 - aTe^{-aT} - e^{-aT}) \right]$$

$$(z-1)(z-e^{-aT})$$

可以看出，零阶保持器改变开环脉冲传递函数的阶数也不影响开环脉冲传递函数的极点，只影响开环零点。

7.5 线性离散系统的脉冲传递函数

图 7-11 为一个典型的线性闭环离散系统结构图。由脉冲传递函数的定义及开环脉冲传递函数的求法，对图 7-11 可建立方程组如下：

$$C(z) = G(z)E(z)$$

$$E(z) = R(z) - B(z)$$

$$B(z) = GH(z)E(z)$$
解上面联立方程，可得该闭环离散系统脉冲传递函数

\[\Phi(z) = C(z) = \frac{G(z)}{R(z)} \] \hspace{1cm} (7-25)

闭环离散系统的误差脉冲传递函数

\[\Phi_e(z) = \frac{E(z)}{R(z)} = \frac{1}{1 + GH(z)} \] \hspace{1cm} (7-26)

令 \(\Phi(z) \) 或 \(\Phi_e(z) \) 的分母多项式为零，便可得到闭环离散系统的特征方程:

\[D(z) = 1 + GH(z) = 0 \] \hspace{1cm} (7-27)

式中，\(GH(z) \) 为离散系统的开环脉冲传递函数。

线性离散系统的结构多种多样，采样开关所处位置不同，结构相似的离散系统的传递函数完全不相同。而且当偏差信号不以离散信号的形式输入前向通路的第一个环节时，一般得不出闭环脉冲传递函数，而只能得出输出信号的 \(Z \) 变换表达式。表 7-1 为常见的线性离散系统的框图及输出信号的 \(Z \) 变换。表 7-1 为常见的线性离散系统的框图及输出信号的 \(Z \) 变换表达式。表 7-1 为常见的线性离散系统的框图及输出信号的 \(Z \) 变换。

<table>
<thead>
<tr>
<th>序号</th>
<th>系统框图</th>
<th>(C(z)) 计算式</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>(G(z)R(z)) 1+GH(z)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>RG(z)G_z(z) 1+G_zH(z)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>G(z)R(z) 1+G(z)H(z)</td>
</tr>
<tr>
<td>序号</td>
<td>系统框图</td>
<td>(C(z)) 计算式</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>(\frac{G_1(z)G_2(z)R(z)}{1 + G_1(z)G_2H(z)})</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>(\frac{RG_1(z)G_2(z)G_3(z)}{1 + G_1(z)G_2(z)H(z)})</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>(\frac{GR(z)}{1 + G(z)H(z)})</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>(\frac{G(z)R(z)}{1 + G(z)H(z)})</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>(\frac{G_1(z)G_2(z)R(z)}{1 + G_1(z)G_2(z)H(z)})</td>
</tr>
</tbody>
</table>

【例 7-12】试求图 7-12 中线性离散系统的闭环脉冲传递函数。

【解】

系统开环脉冲传递函数为

\[
G(z) = Z \left[G(s) \right] = \left(1 - z^{-1} \right) Z \left[\frac{k}{s \cdot \frac{1}{s + a}} \right] = k \left[\frac{(aT - 1 + e^{-aT})z + (1 - e^{-aT} - aTe^{-aT})}{a^2(z - 1)(z - e^{-aT})} \right]
\]

则系统的闭环脉冲传递函数为

![图 7-12 线性离散系统](image6)
\[\Phi(z) = \frac{C(z)}{R(z)} = \frac{G(z)}{1 + G(z)} \]

\[k[(aT - 1 + e^{-aT})z + (1 - e^{-aT} - aTe^{-aT})] \]

\[a^2 z^2 + [k(aT - 1 + e^{-aT}) - a^2(1 + e^{-aT})]z + [k(1 - e^{-aT} - aTe^{-aT}) + a^2 e^{-aT}] \]

【例 7-13】 试求如图 7-13 所示的线性离散系统的输出信号 \(c(t) \) 的 \(Z \) 变换。

图 7-13 线性离散系统

【解】 根据系统结构图可以列写方程组如下：

\[C(s) = G(s)N^*(s) \]
\[N(s) = G_2(s)M^*(s) \]
\[M(s) = G_1(s)E(s) = G_1(s)[R(s) - H(s)C(s)] \]

整理以上 3 式可得

\[C(z) = G_1(z)R(z) - G_1HG_1(z)N(z) \]

由上式可以得到输出信号的 \(Z \) 变换为

\[C(z) = \frac{G_2(z)G_1(z)G_1R(z)}{1 + G_2(z)G_1G_2H(z)} \]

因为该系统的偏差信号未经采样开关就输入前向通路第一个环节，所以系统的闭环传递函数不能得出，只能得到输出信号的 \(Z \) 变换式。

7.6 线性离散系统的稳定性

线性离散系统的数学模型是建立在 \(Z \) 变换的基础上的，在 \(Z \) 平面上分析线性离散系统的稳定性，可以借助连续系统在 \(S \) 平面上稳定性的分析方法。为此首先需要研究 \(S \) 平面与 \(Z \) 平面的映射关系。

7.6.1 \(S \) 平面到 \(Z \) 平面的映射关系

在 \(Z \) 变换定义中，

\[z = e^{aT} \quad (7-28) \]
其中, T 为采样周期。将 $s = \sigma + j\omega$ 代入式 (7-28)，得

$$
\begin{align*}
 z &= e^{(\sigma + j\omega)T} = e^{\sigma T} e^{j\omega T} \\
 &= e^{\sigma T} \angle \omega T
\end{align*}
$$

于是 s 域到 Z 域的基本映射关系式为

$$
|z| = e^{\sigma T}, \quad \angle z = \omega T
$$

（7-30）

在 S 平面的虚轴，即 $\sigma = 0$。当 ω 从 $-\infty$ 变到 ∞ 时，由式（7-30）知，映射到 Z 平面的轨迹是以原点为圆心的单位圆。只是当 S 平面上的点沿虚轴从 $-\omega_s/2$ 移到 $\omega_s/2$ 时 (其中 $\omega_s = 2\pi/T$ 为采样角频率)，Z 平面上的相应点沿单位圆从 $-\pi$ 逆时针变化到 π 正好转了一圈；而当 S 平面上的点在虚轴上从 $-\omega_s/2$ 移到 $3\omega_s/2$ 时，Z 平面上的相应点又将逆时针沿单位圆转过一圈。依次类推，如图 7-14 所示。由此可见，可以把 S 平面划分为无穷多条平行于实轴的周期带，其中从 $-\omega_s/2$ 到 $\omega_s/2$ 的周期带称为主带，其余的周期带称为辅带。而 S 平面的整个虚轴在 Z 平面的映像为单位圆。

在 S 平面左半部，即 $\sigma < 0$。由式（7-30）可知，$|z| < 1$，所以 S 平面左半部映射到 Z 平面单位圆内。而在 S 平面右半部，$\sigma > 0$，$|z| > 1$，所以 S 平面右半部映射到 Z 平面单位圆外。

从 S 平面与 Z 平面的映射关系可以看出，S 平面上稳定区域，即 S 平面的左半部在 Z 平面的映射为单位圆内。这说明，Z 平面上的稳定区域为单位圆内，而单位圆外为不稳定区域，单位圆是稳定与不稳定的分界线。

7.6.2 线性离散系统稳定的充要条件

闭环线性离散系统稳定的充要条件：线性离散系统的闭环特征根全部位于 Z 平面的单位圆内，或者说全部闭环特征根的模均小于 1。若在闭环特征根中，有位于 Z 平面单位圆以外者时，则闭环线性离散系统是不稳定的。

【例 7-14】设线性离散系统的闭环特征方程为 $z^2 - 0.736z + 0.368 = 0$ 试判断系统的稳定性。

【解】由系统闭环特征方程

$$
 z^2 - 0.736z + 0.368 = 0
$$

解出特征方程的根

$$
 z_1 = 0.37 + j0.48, \quad z_2 = 0.37 - j0.48
$$
因为 $|z_1| = |z_2| = \sqrt{0.37^2 + 0.48^2} = 0.606 < 1$，所以该离散系统稳定。

该例子中，闭环特征方程的阶数为 2 阶，直接求闭环特征根比较容易。而当系统阶数较高时，求根就比较麻烦。

7.6.3 劳斯稳定判据

在连续系统的稳定性分析中，利用劳斯稳定性判据来判断系统特征方程的根是否都在 S 平面左半部。若要在离散系统的稳定性分析中应用劳斯判据，需要将 Z 平面的单位圆映射到另一个平面的左半部。采用 W 变换，令

$$ z = \frac{w+1}{w-1} \quad \text{(7-31)} $$

则

$$ w = \frac{z+1}{z-1} \quad \text{(7-32)} $$

式 (7-31) 和 (7-32) 表明，W 变换为可逆的双向线性变换，便于应用。令

$$ z = x + jy, \quad w = u + jv $$

代入式 (7-32)，得

$$ u + jv = \frac{(x^2 + y^2) - 1}{(x-1)^2 + y^2} - j \frac{2y}{(x-1)^2 + y^2} $$

显然

$$ u = \frac{(x^2 + y^2) - 1}{(x-1)^2 + y^2} $$

由于上式的分母 $(x-1)^2 + y^2$ 始终为正，因此可得

1. $u = 0$ 等价为 $x^2 + y^2 = 1$，表明 W 平面的虚轴对应于 Z 平面的单位圆周。
2. $u < 0$ 等价为 $x^2 + y^2 < 1$，表明左半 W 平面对应于 Z 平面单位圆内的区域。

![图 7-15 Z 平面与 W 平面的对应关系](image)

3. $u > 0$ 等价为 $x^2 + y^2 > 1$，表明右半 W 平面对应于 Z 平面单位圆外的区域。

Z 平面和 W 平面的这种对应关系，如图 7-15 所示。经过 W 变换后，Z 平面上的单位圆内映射到 W 平面左半部，因此，根据 W 域中的特征方程系数，可以直接应用劳斯判据判断离散系统的稳定性。
【例 7-15】设离散系统的脉冲传递函数为

\[G(z) = \frac{0.632Kz}{z^2 - 1.368z + 0.368} \]

试用劳斯判据求出系统临界稳定时的 \(K \) 值。

【解】闭环特征方程为

\[D(z) = 1 + G(z) = z^2 + (0.632K - 1.368)z + 0.368 = 0 \]

令 \(z = (w+1)/(w-1) \), 得

\[\left(\frac{w+1}{w-1} \right)^2 + (0.632K - 1.368) \left(\frac{w+1}{w-1} \right) + 0.368 = 0 \]

化简后，得 \(w \) 域特征方程

\[0.632Kw^2 + 1.264w + (2.736 - 0.632K) = 0 \]

列出劳斯表

\(w^2 \)	0.632K	2.736 - 0.632K
\(w^1 \)	1.264	0
\(w^0 \)	2.736 - 0.632K	

从劳斯表第一列系数可以看出，为保证系统稳定，必须有 \(0 < K < 4.33 \)，故系统稳定的临界增益 \(K = 4.33 \)。

7.7 线性离散系统的时域分析

7.7.1 极点在 \(Z \) 平面的分布与瞬态响应

同连续系统类似，线性离散系统的闭环极点在 \(Z \) 平面上的分布，决定了系统时域响应的形式。设离散系统的闭环脉冲传递函数为

\[\Phi(z) = \frac{M(z)}{D(z)} = K \prod_{i=1}^{m} \frac{(z - z_i)}{(z - p_i)} \]

其中， \(z_i (i=1, 2, \cdots, m) \) 为 \(\Phi(z) \) 的零点， \(p_k (k=1, 2, \cdots, n) \) 为 \(\Phi(z) \) 的极点。不失一般性，且为了便于讨论，假定 \(\Phi(z) \) 无重极点。

当 \(r(t) = 1(t) \) 时，离散系统输出的 \(Z \) 变换

\[C(z) = \Phi(z)R(z) = \frac{M(z)}{D(z)} \cdot \frac{z}{z - 1} \]

将 \(C(z) \) 展成部分分式

\[C(z) = A \cdot \frac{z}{z - 1} + \sum_{k=1}^{n} B_k \cdot \frac{z}{z - p_k} \quad (7-33) \]

其中
对式（7-33）进行 Z 反变换得到

\[c(nT) = A + \sum_{k=1}^{n} B_k p_k^n \] (7-34)

在式（7-34）中，第二项为暂态分量，显然极点 \(p_k \) 在 \(Z \) 平面的位置决定了瞬态响应中各分量的类型。

1. \(p_k \) 为实数

当闭环脉冲传递函数的极点为实数时，瞬态响应对应的分量为

\[c_k(nT) = B_k p_k^n \] (7-35)

（1）若 \(p_k > 1 \)，闭环单极点位于 \(Z \) 平面单位圆外的正实轴上，则有 \(a > 0 \)（\(a = \frac{1}{T} \ln p_k \)），故动态响应 \(c_k(nT) \) 是按指数规律发散的脉冲序列。

（2）若 \(p_k = 1 \)，闭环单极点位于右半 \(Z \) 平面的单位圆周上，则有 \(a = 0 \)，故动态响应 \(c_k(nT) = B_k \)，为等幅脉冲序列。

（3）若 \(0 < p_k < 1 \)，闭环单极点位于 \(Z \) 平面单位圆内的正实轴上，则有 \(a < 0 \)。

（4）动态响应 \(c_k(nT) \) 是按指数规律收敛的脉冲序列，且 \(p_k \) 越接近原点，\(|a| \) 越大，\(c_k(nT) \) 衰减越快。

（5）若 \(p_k < -1 \)，闭环单极点位于 \(Z \) 平面单位圆外的负实轴上，则 \(c_k(nT) \) 为交替变号的发散脉冲序列。

（6）若 \(p_k = -1 \)，闭环单极点位于左半 \(Z \) 平面的单位圆周上，则 \(c_k(nT) \) 为交替变号的等幅脉冲序列。

（7）若 \(-1 < p_k < 0 \)，闭环单极点位于 \(Z \) 平面单位圆内的负实轴上，则 \(c_k(nT) \) 为交替变号的衰减脉冲序列，且 \(p_k \) 离原点越近，\(c_k(nT) \) 衰减越快。

闭环实极点分布与相应动态响应形式的关系如图 7-16 所示。
共轭复数极点

当闭环脉冲传递函数有一对共轭复数极点 \(p_{k,k+1} = a \pm jb \) 时，可以证明这一对极点对应的瞬态响应为

\[
c_{k,k+1}(nT) = A_k \lambda_k^n \cos(n\theta_k + \phi_k)
\]

其中，\(A_k \) 和 \(\phi_k \) 是由部分分式展开式的系数所确定的常数，而

\[
\lambda_k = \sqrt{a^2 + b^2} = |p_k|
\]

\[
\theta_k = \tan^{-1} \frac{b}{a}
\]

（1）若 \(|p_k| > 1 \)，闭环复数极点位于 \(Z \) 平面上的单位圆外，则有 \(a > 0 \)，故动态响应 \(c_{k,k+1}(nT) \) 为振荡发散脉冲序列。

（2）若 \(|p_k| = 1 \)，闭环复数极点位于 \(Z \) 平面上的单位圆上，则有 \(a = 0 \)，故动态响应 \(c_{k,k+1}(nT) \) 为等幅振荡脉冲序列。

（3）若 \(|p_k| < 1 \)，闭环复数极点位于 \(Z \) 平面上的单位圆内，则有 \(a < 0 \)，故动态响应 \(c_{k,k+1}(nT) \) 为振荡收敛脉冲序列，且 \(|p_k| \) 越小，即复极点越靠近原点，振荡收敛越快。

闭环共轭复数极点分布与相应动态响应形式的关系，如图 7-17 所示。

综上所述，离散系统的动态特性与闭环极点的分布密切相关。当闭环实极点位于 \(Z \) 平面的左半单位圆内时，由于输出衰减脉冲交替变号，故动态过程质量很差；当闭环复极点位于左半单位圆内时，由于输出是衰减的高频脉冲，故系统动态过程性能欠佳。在离散系统设计时，应把闭环极点安置在 \(Z \) 平面上的右半单位圆内，且尽量靠近原点。

图 7-17 闭环实极点分布与相应的动态响应形式

7.7.2 线性离散系统的时间响应

线性离散系统的时间响应可由输出信号 \(C(z) \) 的 \(Z \) 反变换求出 \(c^*(t) \) 得到
【例 7-16】设线性离散系统的闭环脉冲传递函数为

\[\Phi(z) = \frac{0.368z + 0.264}{z^2 - z + 0.632} \]

输入信号 \(r(t) = 1(t) \)，采样周期 \(T = 1s \)，试分析系统的时间响应。

【解】输入信号 \(r(t) = 1(t) \)，则

\[R(z) = \frac{z}{z - 1} \]

得

\[C(z) = \Phi(z)R(z) = \frac{0.368z^{-1} + 0.264z^{-2}}{1 - 2z^{-1} + 1.632z^{-2} - 0.632z^{-3}} \]

通过长除法，得到系统的阶跃响应序列 \(c(nT) \) 为

<table>
<thead>
<tr>
<th>(n)</th>
<th>(c(nT))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.3679</td>
</tr>
<tr>
<td>2</td>
<td>1.0000</td>
</tr>
<tr>
<td>3</td>
<td>1.3996</td>
</tr>
<tr>
<td>4</td>
<td>1.1470</td>
</tr>
<tr>
<td>5</td>
<td>0.8944</td>
</tr>
<tr>
<td>6</td>
<td>0.8015</td>
</tr>
<tr>
<td>7</td>
<td>0.8682</td>
</tr>
<tr>
<td>8</td>
<td>0.9937</td>
</tr>
<tr>
<td>9</td>
<td>1.0770</td>
</tr>
<tr>
<td>10</td>
<td>1.0770</td>
</tr>
<tr>
<td>11</td>
<td>1.0810</td>
</tr>
<tr>
<td>12</td>
<td>1.0523</td>
</tr>
<tr>
<td>13</td>
<td>0.9811</td>
</tr>
<tr>
<td>14</td>
<td>0.9607</td>
</tr>
<tr>
<td>15</td>
<td>0.9726</td>
</tr>
<tr>
<td>16</td>
<td>0.9975</td>
</tr>
<tr>
<td>17</td>
<td>0.9975</td>
</tr>
<tr>
<td>18</td>
<td>0.9967</td>
</tr>
<tr>
<td>19</td>
<td>0.9967</td>
</tr>
<tr>
<td>20</td>
<td>0.9967</td>
</tr>
</tbody>
</table>

绘出离散系统的单位阶跃响应 \(c'(t) \) 如图 7-18 所示。由图可以求得离散系统的近似性能指标：超调量 \(\sigma\% = 40\% \)，峰值时间 \(t_p = 4s \)，调节时间 \(t_s = 12s \)。

![图 7-18 离散系统输出脉冲序列](image)

7.7.3 线性离散系统的稳态误差

设离散系统的误差信号的脉冲序列为 \(e^*(t) \)，当离散系统稳定时，其稳态误差为 \(t \geq t_s \) 时，
自动控制原理

\(e^*(t) \) 序列的值，记为

\[
e^*_s(t) \quad t \geq t_s
\]

当 \(t \to \infty \) 时，离散系统稳态误差序列 \(e^*_s(t) \) 的终值 \(e^*_s(\infty) \) 为

\[
e^*_s(\infty) = \lim_{t \to \infty} e^*(t) = \lim_{t \to \infty} e^*_s(t)
\]

若误差信号的 \(Z \) 变换为 \(E(z) \)，则由 \(Z \) 变换终值定理，当线性离散系统稳定时，系统稳态误差终值 \(e^*_s(\infty) \) 为

\[
e^*_s(\infty) = \lim_{t \to \infty} e^*(t) = \lim_{z \to 1} z - 1 E(z)
\] (7-37)

【例 7-17】 设单位负反馈离散系统的结构图如图 7-19 所示，其中 \(G(s) = 1/(s + 1), T = 1s \)，输入连续信号 \(r(t) \) 为 \(t \)，试求离散系统的稳态误差。

图 7-19 单位负反馈离散系统的结构图

【解】 \(G(s) \) 的 \(Z \) 变换为

\[
G(z) = Z[G(s)] = \frac{z(1 - e^{-1})}{(z - 1)(z - e^{-1})}
\]

系统的误差脉冲传递函数

\[
\Phi_e(z) = \frac{1}{1 + G(z)} = \frac{(z - 1)(z - 0.368)}{z^2 - 0.736z + 0.368}
\]

闭环极点 \(z_1 = 0.368 + j0.482, \quad z_2 = 0.368 - j0.482 \)，全部位于 \(Z \) 平面的单位圆内，可以应用终值定理方法求稳态误差。

当 \(r(t) = t \)，相应 \(r(nT) = nT \) 时，\(R(z) = T z/(z - 1)^2 \)。由终值定理，得

\[
e(\infty) = \lim_{z \to 1} T(z - 0.368) = T = 1
\]

习 题

7-1 试求下列函数的 \(Z \) 变换。

(1) \(X(s) = \frac{K}{s(s + a)} \) \hspace{1cm} (2) \(X(s) = \frac{1}{(s + a)^2} \)

(3) \(X(s) = \frac{s + 1}{s^2} \) \hspace{1cm} (4) \(X(s) = \frac{1 - e^{-T}}{s} \frac{K}{s(s + a)} \)

(5) \(e(t) = \begin{cases} 0, & t < 0 \\ \sin \omega t, & t \geq 0 \end{cases} \) \hspace{1cm} (6) \(X(s) = \frac{b - a}{(s + a)(s + b)} \)
第 7 章 离散控制系统

7-2 试求下列函数的 Z 反变换
(1) \(E(z) = \frac{z}{(z-1)^2(z-2)} \)
(2) \(E(z) = \frac{0.5z}{z^2-1.5z+0.5} \)
(3) \(E(z) = \frac{z(1-e^{-at})}{(z-1)(z-e^{-at})} \)
(4) \(E(z) = \frac{-3+z^{-1}}{1-2z^{-1}+z^{-2}} \)

7-3 试确定下列函数的终值。
（1）\(E(z) = \frac{Tz^{-1}}{(1-z^{-1})^2} \)
（2）\(E(z) = \frac{z^2}{(z-0.8)(z-0.1)} \)

7-4 已知 Z 变换的函数为
\[E(z) = \frac{0.792z^2}{(z-1)(z^2-0.0416z+0.008)} \]

7-5 已知离散系统的特征方程分别为
（1）\(D(z) = z^2 + 1.5z + 1 = 0 \)
（2）\(D(z) = z^4 - 1.7z^3 + 1.04z^2 + 0.0268z + 0.024 = 0 \)
（3）\(D(z) = z^3 + 3.5z^2 + 3.5z + 1 = 0 \)
（4）\(D(z) = z^4 + 0.2z^3 + z^2 + 0.36z + 0.8 = 0 \)
（5）\(D(z) = (z+1)(z+0.5)(z+2) = 0 \)

7-6 试求如图 7-20 所示系统的输出表达式 C(z)。

图 7-20 习题 7-6
7-7 如图 7-21 所示的离散控制系统，当系统在 \(r(t) = 2 \cdot 1(t) \) 和 \(\frac{dr(t)}{dt} = 1(t) \) 作用下时，试求系统的稳态误差 \(e(\infty) \)。
第8章

MATLAB 语言及其仿真实验

教学要求与学习目标

（1）掌握控制系统传递函数建立的几种方法。
（2）掌握根据设计需要，选择合适的传递函数及相互之间的转换。
（3）掌握时域分析法、根轨迹法和频率特性法使用的函数。
（4）理解使用函数求解稳态误差、阻尼线的方法。
（5）掌握使用 MATLAB 进行频率法校正的一般步骤。
（6）了解 S 函数的使用、基本的编制方法。

知识要点

（1）控制系统的建模：传递函数模型建立的几个重要函数、相互之间的转换。
（2）控制系统的稳定性分析：控制系统稳定性分析的基本函数、程序的编制。
（3）时域分析法、根轨迹法和频率特性法分析控制系统，三种经典分析方法的函数及其使用规则。
（4）超前校正、滞后校正和滞后-超前校正，使用 MATLAB 基本函数进行三种校正程序的编制及其曲线绘制。
8.1 MATLAB 语言简介

MATLAB 是 MathWorks 公司于 1982 年推出的一款高性能的数值计算和可视化软件，它集数值分析、矩阵运算、信号处理和图形显示于一体，构成了一个使用方便、界面友好的用户环境。MATLAB 的推出得到了各个领域专家学者的广泛关注，其强大的扩展功能为各个领域的应用提供了基础，现已成为国际控制界应用最广的首选计算机工具。控制界的很多知名学者都为各自擅长的领域写出工具箱，其中很多工具箱已经成为该领域的标准。

和其他的程序设计语言不同，MATLAB 语言的基本变量单元是复数矩阵，其矩阵处理功能和图形处理功能是其最显著的特色。这里介绍一些简单实用的 MATLAB 命令及操作。

8.1.1 MATLAB 的应用基础

1. 如何应用 MATLAB

通常以命令驱动方式应用 MATLAB。当输入单个命令时，MATLAB 会立即对其进行处理，并且显示处理结果。MATLAB 也能够执行存储在文件中的命令序列。

通过键盘输入的命令，可以用上下箭头键存取。

2. MATLAB 的变量

MATLAB 的一个特点是变量在应用前不必确定维数。在 MATLAB 中，变量一旦被采用，会自动产生（如果必要，变量的维数以后还可改变），并保留在存储器中。

为了得到工作空间内的变量清单，可以通过键盘输入命令 who，当前存放在工作空间内的所有变量便会显示在屏幕上。

命令 clear 能从工作空间中清除所有非永久性变量。如果只需要从工作空间中清除某个特定变量，比如“x”，则应输入命令 clear x。

3. 以“%”开始的程序行

在 MATLAB 中以 “%” 开始的行表示注解和说明，这些注解和说明是不执行的。若注解和说明需要一行以上程序行，则每一行均需以 “%” 为开头。

4. 分号操作符

分号用来取消打印（显示）。若语句的最后一个符号是分号，则打印被取消，但是命令仍在执行，而结果不再显示。此外，在输入矩阵时，分号表示一行的结束。

5. 冒号操作符

冒号操作符在 MATLAB 中起着重要作用。该操作符用来建立行向量，赋予矩阵下标和规定迭代。例如：j : k 表示 [j j+1 … k-1 k]，A(:,j) 表示矩阵 A 的第 j 列。
6. 输入超过一行的长句

如果输入的语句太长，超出了一行，则在语句的末尾输入 3 个小圆点 (...), 以表明语句将延续到下一行。

7. 在一行内输入数个语句

如果语句之间用逗号或分号隔开，则可以把数个语句放在一行内。例如:

 plot (1,3, 'o'), text (1,20, 'system 1'), text (1,15, 'system 2')

8. 选择输出格式

MATLAB 中的所有计算都是以双精度方式完成的，但是显示输出可以是具有 4 个小数位的定点输出。例如，对于向量

 x = [1/3,0.00002]

MATLAB 有下列输出

 x =

 0.3333 0.0000

若在矩阵中至少有一个元素不是严格的整数，则有多种可能的输出格式。显示的输出量可以用【File】菜单的【Preferences】命令设置，或用下列命令加以控制:

 format short (0.33330.0000)
 format long (0.333333333333333 0.000020000000000)
 format shorte (3.3333e-001 2.0000e-005)
 format longe (3.333333333333333e-001 000000000000000e-005)

9. 退出 MATLAB 时如何保存变量

当退出 MATLAB 时，工作空间中的所有变量都将消失。若在退出之前输入命令 save，则所有的变量都被保存在磁盘文件 matlab.mat 文件中。当再次进入 MATLAB 时，命令 load 将使工作空间恢复到以前的状态。

如果要保存/恢复部分变量，可用如下命令:

 save 文件名 变量名(变量名之间用空格分割) /load 文件名

参考 save 命令的帮助文件。

8.1.2 MATLAB 函数

在当前的 MATLAB 5.0 及以上版本中，MATLAB 函数的调用格式和其他编程语言是不同的，其典型的调用格式为

 [返回变量列表]=func_name (输入变量列表)
自动控制原理

其中等号左边的变量为返回变量，等号右边的变量为输入变量。MATLAB 允许在函数调用时返回多个变量。而一个函数又可以由多种格式进行调用，例如 bode()函数可以由下面的格式调用

```
[mag, phase] = bode(num, den, w)
```

其中 bode() 函数用来求求传递函数分子和分母表示的系统 Bode 图。而系统在这里由传递函数分子 num 和分母 den 表示，还可以用下面的格式调用此函数

```
[mag, phase] = bode(A, B, C, D, w)
```

其中(A, B, C, D)为系统状态方程模型。尽管两种调用格式是完全不同的，MATLAB 函数还是会自动识别到底是用哪种格式调用该函数的，从而得出正确的结论。

在当前版本的控制系统工具箱中还允许用线性模型对象变量 G 来描述系统，例如

```
[mag, phase] = bode(G, w)
```

MATLAB 函数在返回变量的格式上也可以不同，例如上面的语句中若没有返回变量，则将自动地绘制系统的 Bode 图，否则返回计算结果数据。

8.1.3 绘制响应曲线

MATLAB 具有丰富的获取图形输出的程序集。命令 plot 可以产生线性 x-y 图形（用命令 loglog, semilogx, semilogy 或 polar 取代 plot，可以产生对数坐标图和极坐标图）。所有这些命令的应用方式都是相同的，它们只对坐标轴的分度和数据的显示产生影响。

1. X-Y 图

如果 X 和 Y 是同一长度的向量，则命令

```
plot(X, Y)
```

将画出 Y 值对于 X 值的关系图。

2. 画多条曲线

为了在一幅图上画出多条曲线，采用具有多个自变量的 plot 命令:

```
plot(X1, Y1, X2, Y2, ..., Xn, Yn)
```

变量 X1, Y1, X2, Y2 等是一些向量对。每一个 X-Y 对都可以用图解表示出来，因而于一幅图上形成多条曲线。多重变量的优点是它允许不同长度的向量在同一幅图上显示出来，每一对变量采用不同的线型。

在一幅图上画一条以上的曲线时，也可以利用命令 hold。hold 命令可以保持当前的图形，并且防止删除和修改比例尺。因此，随后的一条曲线将会重叠地画在原曲线上。再次输入命令 hold，会使当前的图形复原。
第 8 章 MATLAB 语言及其仿真实验

3. 加进网格线、图形标题、X 轴标记和 Y 轴标记

一旦在屏幕上显示出图形，就可以画出网格线，定出图形标题，并且标定 x 轴标记和 y 轴标记。MATLAB 中关于网格线、标题、X 轴标记和 Y 轴标记的命令如下:

```
grid(网格线)
title(图形标题)
xlabel(X 轴标记)
ylabel(Y 轴标记)
```

4. 在图形屏幕上书写文本

为了在图形屏幕上的点(x,y)书写文本，采用命令:

```
text(x,y,'text')
```

例如，利用语句

```
text(3,0.45,'sin t')
```

将从点(3,0.45)开始，水平地写出 sin t。

5. 图形类型

下列语句:

```
plot(x,y,'x')
```

将利用标记符号×画出一个点状图。MATLAB 能够提供的线和点的类型如表 8-1 所示。

<table>
<thead>
<tr>
<th>线的类型</th>
<th>点的类型</th>
</tr>
</thead>
<tbody>
<tr>
<td>实线</td>
<td>-</td>
</tr>
<tr>
<td>短画线</td>
<td>--</td>
</tr>
<tr>
<td>虚线</td>
<td>:</td>
</tr>
<tr>
<td>点画线</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>×号</td>
</tr>
</tbody>
</table>

6. 颜色

下列语句:

```
plot(X,Y,'+g')
```

表明用绿色“+”号画线。MATLAB 提供的颜色如表 8-2 所示。
表 8-2 MATLAB 部分颜色对照表

<table>
<thead>
<tr>
<th>颜色</th>
<th>符号</th>
</tr>
</thead>
<tbody>
<tr>
<td>红色</td>
<td>r</td>
</tr>
<tr>
<td>绿色</td>
<td>g</td>
</tr>
<tr>
<td>蓝色</td>
<td>b</td>
</tr>
<tr>
<td>白色</td>
<td>w</td>
</tr>
<tr>
<td>无色</td>
<td>i</td>
</tr>
</tbody>
</table>

参考 plot 的帮助文件。

7. 自动绘图算法

在 MATLAB 中，图形是自动定标的。在另一幅图形画出之前，这幅图形作为现行图将保持不变，但是在另一幅图形画出后，原图形将被删除，坐标轴自动地重新定标。

8. 手工坐标定标

若需要在下列语句指定的范围内绘制曲线:

\[
V = [x - \text{min} \quad x - \text{max} \quad y - \text{min} \quad y - \text{max}]
\]

则应输入命令 axis(V)，式中 V 是一个四元向量。axis(V)把坐标轴定在规定的范围内。

8.1.4 MATLAB 语言的联机帮助功能

下面的实验中，我们将较为详细地学习使用 MATLAB 的语言基础和控制系统仿真，但是 MATLAB 的内容极其丰富，在学习和使用中，可以利用 MATLAB 的联机帮助功能。

MATLAB 的联机帮助既可以由 help 命令来直接获得，又可以由 MATLAB 图形界面下的 help 菜单来查询，还可以用 lookfor 命令查询有关的关键词：

```matlab
>> help plot
>> lookfor plot
```

8.2 MATLAB 语言基础实验

实验一 MATLAB 语言平台

一、实验目的

1. 学习了解 MATLAB 语言环境。
2. 练习 MATLAB 命令的基本操作。
3. 练习 m 文件的基本操作。
二、实验内容

1. 学习了解 MATLAB 语言环境
 1) MATLAB 语言操作界面
 开机双击相应图标即可进入 MATLAB 命令窗口，如图 8-1 所示。在命令提示符位置键入命令，完成下述练习。

 ![MATLAB 窗口](image)
 图 8-1 MATLAB 窗口

2) 练习 DOS 相似命令
 MATLAB 语言与 DOS 操作系统有如下相似的命令，在操作界面上练习这些命令。

   ```
   Dir      dir('c:\windows')
   Type     type expm.m
   Cd        cd c:\matlab6p5\help
   ```

3) MATLAB 的数据格式
 合法的数据格式有 short,long,hex,short e,long e,rational 等。
 键入
   ```
   a=pi;b=exp(1)
   ```
 由 File/Preferences…改变数据格式，观察变量值。

4) 变量查询
 变量查询命令有 who,whos，查询变量。
5）路径函数与搜索路径

路径函数 path 列出 MATLAB 自动搜索路径清单，执行该命令。

```
path(path,'newpath')
addpath('newpath')
```

用于在搜索路径清单中增加新的路径项，练习该命令。
或由 File/Set Path…设置路径。
说明：在命令窗口键入一命令并按下回车键，MATLAB 就在搜索路径中搜索相应的命令文件（内部命令和函数除外），找到后就执行该文件，若未找到，就给出错误提示 “File 'xxxx' not found.”。

6）联机帮助
键入
```
help help
```

阅读 help 函数的使用说明。
键入
```
help
```

列出 help 项。
查询前面使用过的命令
```
help who
help path
```

阅读上述函数的功能、使用格式等。

7）字符串查询
键入
```
help lookfor
```

阅读 MATLAB 函数 lookfor 的功能与使用方法，并使用该命令查询相应的关键词字符串。

8）MATLAB 语言演示
键入
```
Demo
```

MATLAB 语言功能演示。
第 8 章 MATLAB 语言及其仿真实验

2. 练习 MATLAB 命令的基本操作

1）键入常数矩阵输入命令

```matlab
a=[1 2 3]
a=[1;2;3]
```
比较显示结果有何不同。

```matlab
b=[1 2 5]
b=[1 2 5];
```
比较显示结果有何不同。

2）作循环命令程序

```matlab
makesum=0;
for i=1:1:100
    makesum=makesum+i;
end
```
键入 `makesum`，按回车键，观察计算结果。

3）分别执行下面命令

```matlab
a=[1 2 3;4 5 6;7 8 0]
poly(a)
rank(a)
det(a)
trace(a)
inv(a)
eig(a)
```
观察显示结果。使用联机帮助（help）查阅相应函数的意义和函数的格式。

实验二 MATLAB 数值运算

一、实验目的

(1) 学习 MATLAB 的基本矩阵运算；
(2) 学习 MATLAB 的点运算。

二、实验内容

在下面的实验操作中，认真执行每项操作，掌握其作用和目的。

1. 基本矩阵运算

1）创建数值矩阵
输入

```matlab
a=[1 2 3;4 5 6;7 8 9];
```
观察

\[
a(3,2) \\
a(:,:,1)
\]

输入

\[
t=0:10; \\
u=0:0.1:10;
\]

观察向量 \(t,u \) 的值。

输入

\[
a(:,:,3)=[2;3;4]; \\
a
\]

观察矩阵 \(a \) 的变化。

输入

\[
b=[1+2i;3+4i;3];
\]

观察复数矩阵。

2）特殊矩阵

输入

\[
a=\text{ones}(3,3); \\
b=\text{zeros}(2,2); \\
c=\text{eye}(4); \\
\text{magic}(4);
\]

观察特殊矩阵。

3）矩阵运算

输入

\[
a=[0 1 0;0 1;-6 -11 -6]; \\
b=[1 2;3 4;5 6]; \\
c=[1 0;0 1 1];
\]

作矩阵乘运算：

\[
v1=c*a; \\
v2=a*b; \\
v3=c*a*b; \\
v4=b*c; \\
v5=c*b;
\]
矩阵乘方运算:

\[a^2 \]
\[a^{1/2} \]

矩阵加减运算:

\[a_1 = a + b \cdot c; \]
\[a_2 = c \cdot b - a(1:2,1:2); \]
\[a_3 = a(1:2,2:3) + c \cdot b; \]

矩阵右除（常规除）:

\[a_{\text{r}} = a / b; \]

矩阵左除:

\[a_{\text{l}} = a \backslash b \]

注意：矩阵运算时的维数匹配。

4) 矩阵特征
完成如下矩阵特征运算:

\[a', \quad \text{inv}(a), \quad \text{diag}(a), \quad \text{tril}(a), \quad \text{triu}(a) \]
\[\text{poly}(a), \quad \text{rank}(a), \quad \text{det}(a), \quad \text{trace}(a), \quad \text{eig}(a) \]

2. MATLAB 的点运算

1) 练习点乘与点除

\[a_1 = [1 \ 2; 3 \ 4]; \]
\[a_2 = 0.2 \cdot a_1; \]

观察

\[[a_1 \ a_2] \]
\[[a_1 \cdot a_2 \ a_1 / a_2] \]

（点乘与点除是数组运算）

2) 正弦、余弦函数

\[t = 0:2\pi/180:2\pi; \]
\[y_1 = \sin(t); y_2 = \cos(t); \]
\[y = y_1 \cdot y_2; \]
\[\text{plot}(t,[y' \ y_1' \ y_2']) \]
3）复变函数

```matlab
w=0.1:0.1:2;
g1=(1+0.5*w*i)/(1-0.5*w*i)
g2=(1+0.5*w*i)./(1-0.5*w*i)
plot(g2);xlabel('real g2(w)');ylabel('image g2(w)')
axis('square')
```

3. 多项式运算

1）建立多项式向量

```matlab
ap=[1 3 3 1]
b=[-1 -2 -3]
bp=poly(b)
```

2）多项式乘与根

```matlab
p=conv(ap,bp)
root(p)
```

3）多项式运算

```matlab
a=[1 2 3 4];b=[1 -1];
c=a+[zeros(1,length(a)-length(b)),b]
poly2str(c,'x')
polyvalm(a,3)
```

4. 代数方程组

1）给定方程组

\[Ax = B \]

方程组的解

\[x = A^{-1}B \text{ or } x = A\backslash B \]

方程为

\[
\begin{bmatrix}
1 & 2 & 3 \\
2 & 3 & 4
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
1 \\
2
\end{bmatrix}
\]

这时不能用第一种方法，\(A^{-1} \)只能用于方阵，这时可用广义逆矩阵解。

```matlab
A=[1 2 3;2 3 4];B=[1;2];
x=pinv(A)*B
x=
0.8333
0.3333
```
实验三 MATLAB 绘图

一、实验目的
（1）学习 MATLAB 的各种二维绘图。
（2）学习 MATLAB 的三维绘图。
（3）学习 MATLAB 的绘图修饰（多种绘图、图形注释、绘图颜色及色图矩阵）。

二、实验内容
在下面的实验操作中，认真执行每项操作，掌握其作用和目的，每个命令的含义和用法查看帮助文件。

1. 基本二维绘图
1）向量绘图

```matlab
x=0:2*pi/100:2*pi;
y1=sin(2*x);y2=cos(2*x);
plot(x,y1)
plot(x,y2)
plot(x,y1,x,y2)
```

保持作图：

```matlab
plot(x,y1);hold on
plot(x,y2);hold off
```

矩阵作图：

```matlab
plot(x',[y1' y2'])
```

设定颜色与线型：

```matlab
plot(x,y1,'c:',x,y2,'ro')
```

多窗口绘图：

```matlab
figure(1);plot(x,y1)
figure(2);plot(x,y2)
```

子图绘图：

```matlab
subplot(221);plot(x,y1)
subplot(222);plot(x,y2)
subplot(223);plot(x,y1,x,y1+y2)
subplot(224);plot(x,y2,x,y1-y2)
```
复变函数绘图:

```matlab
w=0.01:0.01:10;
g=1./(1+2*w*i);
subplot(121);plot(g)
subplot(122);plot(real(g),imag(g))
```

插值绘图:

```matlab
x=0:2*pi/8:2*pi;y=sin(x);
plot(x,y,'o');hold on;
xi=0:2*pi/100:2*pi;
yi=spline(x,y,xi);
plot(xi,yi,'m')
```

反白绘图与绘图背景色设定:

```matlab
whitebg
whitebg('b')
whitebg('k')
```

2）函数绘图

```matlab
fplot('sin',[0 4*pi])
f='sin(x)';fplot(f,[0 4*pi])
fplot('sin(1/x)',[0.01 0.1],1e-3)
fplot('[tan(x),sin(x),cos(x)]',[-2*pi,2*pi,-2*pi,2*pi])
```

3）符号函数快捷绘图:

```matlab
f='exp(-0.5*x)*sin(x)'
ezplot(f,[0,10])
f='x^2+y^2-9'
ezplot(f)
axis equal
```

2. 多种二维绘图

1）半对数绘图（频率特性绘图）

```matlab
w=logspace(-1,1); %横坐标对数分度
g=20*log10(1./(1+2*w*I)); %幅值纵坐标取分贝
p=angle(1./(1+2*w*I))*180/pi %相角纵坐标取度
subplot(211);semilogx(w,g);grid; %幅频特性子图，半对数绘图，加网线
subplot(212);semilogx(w,p);grid; %相频特性子图，半对数绘图，加网线
```
2）极坐标绘图
```matlab
t=0:2*pi/180:2*pi;
mo=cos(2*t);
polar(t,mo);
```

3）直方图绘图
```matlab
t=0:2*pi/8:2*pi;
y=sin(t);
bar(t,y);
```

4）离散棒图
```matlab
t=0:2*pi/8:2*pi;
y=sin(t);
stem(t,y);
```

5）阶梯图
```matlab
t=0:2*pi/8:2*pi;
y=sin(t);
stairs(t,y);
```

6）彗星绘图
```matlab
t=-pi:pi/200:pi;
comet(t,tan(sin(t))-sin(tan(t)))
```

3. 图形注释
```matlab
fplot('[sin(t),cos(t)]',[0,5]);
title('曲线')
xlabel('时间 t');ylabel('幅值 y');
gtext('正弦函数');
gtext('余弦函数');
gtext(grid
```

4. 三维绘图
1）三维线图
```matlab
t=0:pi/50:10*pi;
plot3(sin(t),cos(t),t);
comet3(sin(t),cos(t),t);
```
2) 单变量高度网线图

\[
Z2=[1 \ 1; \ 1 \ -1];
\]
\[
Z4=[Z2 \ Z2; \ Z2 \ -Z2];
\]
\[
Z8=[Z4 \ Z4; \ Z4 \ -Z4];
\]
\[
\text{mesh}(Z8)
\]

3) 3 变量马鞍面网线图

\[
x=-4:0.5:4; \ y=x;
\]
\[
[X, Y] = \text{meshgrid}(x, y);
\]
\[
Z = X.^2 - Y.^2;
\]
\[
\text{mesh}(X, Y, Z)
\]

4) 圆锥面网线图

\[
t1=0:0.1:0.9;
\]
\[
t2=0:0.1:2;
\]
\[
r=[t1, -t2+2];
\]
\[
[x, y, z] = \text{cylinder}(r, 40);
\]
\[
\text{mesh}(x, y, z)
\]

5) 视角修饰

\[
t1=0:0.1:0.9;
\]
\[
t2=0:0.1:2;
\]
\[
r=[t1, -t2+2];
\]
\[
[x, y, z] = \text{cylinder}(r, 40);
\]
\[
\text{mesh}(x, y, z)
\]
\[
\text{subplot}(2, 2, 1); \text{mesh}(x, y, z); \text{view}(0, 0);
\]
\[
\text{subplot}(2, 2, 2); \text{mesh}(x, y, z); \text{view}(-20, 20);
\]
\[
\text{subplot}(2, 2, 3); \text{mesh}(x, y, z); \text{view}(-30, 30);
\]
\[
\text{subplot}(2, 2, 4); \text{mesh}(x, y, z); \text{view}(-40, 40);
\]

6) 暖色（hot）色图

\[
\text{peaks}(20);
\]
\[
\text{axis}('off');
\]
\[
\text{colormap(hot)};
\]
\[
\text{colorbar('horiz')};
\]

7) 光照修饰

\[
\text{surfl}(ext{peaks}(20));
\]
\[
\text{colormap}(ext{gray}) ;
\]
\[
\text{shading interp};
\]
第 8 章 MATLAB 语言及其仿真实验

8）透视与消隐

P=peaks(30);
subplot(121);mesh(P);hidden off;
subplot(122);mesh(P);hidden on;

实验四 MATLAB 句柄绘图

一、实验目的

(1) 学习图形对象（graphics）和句柄（handle）的基本知识。
(2) 学习图形对象属性（object properties）的获得与设置。
(3) 基本句柄绘图（handle graphics）操作；

二、句柄绘图的基本原理

1. 基本图形对象

根屏幕（Root）
图形窗口（Figure）
界面控制（Uicontrol）
界面菜单（Uimenu）
轴（Axes）
线（Line）
块（Patch）
面（Surface）
像（Image）
字（Text）

2. 图形对象创建函数

```
h=figure(n);  % n 为窗口号数
h=uicontrol('property',value);  % 确定控制类型
h=uimenu('property',value);  % 确定菜单形式
h=axes('position',[left,bottom,width,height]);  % 轴对象的位置与大小
h=line(x,y,z);  % x,y 用于二维画线, x,y,z 用于三维画线
h=patch(x,y,z,c);  % x,y,z 定义多边形, c 确定填充颜色
h=surface(x,y,z,c);  % x,y,z 确定三维曲面, c 为颜色矩阵
h=image(x);  % x 为图像数据矩阵
h=text(x,y,'string');  % x,y 确定标注位置, 'string' 为标注字符串
```

图形对象创建函数均为底层函数，注意变量格式。
3. 图形对象的句柄

句柄（handle）是图形对象的标识代码，图形对象的属性信息全部包含在句柄中。各图形对象句柄的数据格式为

<table>
<thead>
<tr>
<th>对象名称</th>
<th>句柄数据格式</th>
</tr>
</thead>
<tbody>
<tr>
<td>根屏幕</td>
<td>0</td>
</tr>
<tr>
<td>图形窗口</td>
<td>整数，表示窗口号数，如1号窗口、2号窗口等</td>
</tr>
<tr>
<td>其余各对象</td>
<td>对应的浮点数</td>
</tr>
</tbody>
</table>

4. 句柄属性的设置与修改

句柄代码含有该对象的属性信息，因此需要通过句柄中属性的设置与修改处理对象属性的变更。MATLAB设置了下面两个函数完成此任务：

<table>
<thead>
<tr>
<th>函数</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>get(H)</td>
<td>获得该对象句柄的全部属性</td>
</tr>
<tr>
<td>get(H,'PropertyName')</td>
<td>获得该对象句柄的某属性</td>
</tr>
<tr>
<td>set(H)</td>
<td>查阅该对象句柄的全部可设定值</td>
</tr>
<tr>
<td>set(H,'PropertyName',PropertyValue)</td>
<td>将该对象句柄的某属性设置为新值</td>
</tr>
</tbody>
</table>

三、实验内容

1. 作直线，并将线的颜色改为红色

```matlab
h1=line([0:10],[0:10]) %创建线对象，返回句柄值h1
set(h1,'color',[1 0 0]) %将线的颜色改为红色
hf=gcf %获得当前1号窗口的句柄值
ha(gca,'Color',[* * *]) %将“线”句柄设为色序的其他颜色
```

2. 在创建对象时设置对象属性

1）二维绘图

```matlab
x=0:pi/24:2*pi
ax=axes('box','on', 'aspectratio',[1 nan]); %设置轴对象属性
hl1=line(sin(x),cos(x), 'linewidth',5, 'linestyle','-','color','c'); %设置轴线象属性
hl1=line(sin(20*x),cos(20*x), 'linestyle',':','color','r');
```

2）三维绘图

```matlab
[x,y,z]=sphere(30)
hs=surf(x,y,z, 'facecolor','c', 'linewidth',1, 'edgecolor','k'); %设置面线象属性
```
第 8 章 MATLAB 语言及其仿真实验

3. 简单动画制作

%正弦曲线运动动画

t=0:pi/48:4*pi;
y=sin(t);
plot(t,y,'g');

%由线对象创建小球
%定义色、型、点的大小、擦除方式
n=length(t);
h=line('color',[1 0 1],'linestyle','.','markersize',50,'erasemode','xor');
i=1;
r=0;
while r<10
 set(h,'xdata',t(i),'ydata',y(i)); %小球位置
 i=i+1;
 if i>n;
 i=1;
 r=r+1;
 end;
end

4. 执行下列程序，阅读程序清单，了解程序编制过程

<table>
<thead>
<tr>
<th>Modes</th>
<th>%12 个特征峰面函数</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xpqquad</td>
<td>%超级方块</td>
</tr>
<tr>
<td>spinner</td>
<td>%虚幻线</td>
</tr>
</tbody>
</table>

8.3 控制理论仿真实验

实验五 控制系统的建模

一、实验目的

(1) 学习在 MATLAB 命令窗口建立系统模型的方法。
(2) 学习如何在三种模型之间相互转换。
(3) 学习如何用 SIMULINK 仿真工具建模。
二、相关知识

1. 传递函数模型

设连续系统的传递函数为

\[G(s) = \frac{\text{num}(s)}{\text{den}(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \cdots + b_{m-1} s + b_m}{a_0 s^n + a_1 s^{n-1} + \cdots + a_{n-1} s + a_n} \]

设离散系统的传递函数为

\[G(z) = \frac{\text{num}(z)}{\text{den}(z)} = \frac{b_0 z^m + b_1 z^{m-1} + \cdots + b_{m-1} z + b_m}{a_0 z^n + a_1 z^{n-1} + \cdots + a_{n-1} z + a_n} \]

则在 MATLAB 中，都可直接用分子/分母多项式系数构成的两个向量 num 与 den 构成的矢量组 [num, den] 表示系统，即

\[
\begin{align*}
\text{num} &= [b_0, b_1, \ldots, b_m] \\
\text{den} &= [a_0, a_1, \ldots, a_n]
\end{align*}
\]

建立控制系统的传递函数模型（对象）的函数为 tf()，调用格式为

\[
\begin{align*}
sys &= \text{tf}(\text{num}, \text{den}) \\
sys &= \text{tf}(\text{num}, \text{den}, \text{Ts}) \\
sys &= \text{tf}(\text{othersys})
\end{align*}
\]

sys=tf(num,den) 返回的变量 sys 为连续系统的传递函数模型。

sys=tf(num,den,Ts) 返回的变量 sys 为离散系统的传递函数模型，Ts 为采样周期，当 Ts=-1 或 Ts=[]时，系统的采样周期未定义。

sys=tf(othersys) 将任意的控制系统对象转换成传递函数模型。

离散系统的传递函数的表达式还有一种表示为 \(z^{-1} \) 的形式（即 DSP 形式），转换为 DSP 形式的函数命令为 filt()，调用格式为

\[
\begin{align*}
sys &= \text{filt}(\text{num}, \text{den}) \\
sys &= \text{filt}(\text{num}, \text{den}, \text{Ts})
\end{align*}
\]

sys=filt(num,den) 函数用来建立一个采样时间未指定的 DSP 形式传递函数。

sys=filt(num,den,Ts) 函数用来建立一个采样时间为 Ts 的 DSP 形式传递函数。

2. 零点和极点增益模型

设连续系统的零点和极点增益模型传递函数为

\[G(s) = K \frac{(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)} \]

设离散系统的零点和极点增益模型传递函数为

\[G(z) = K \frac{(z-z_1)(z-z_2)\cdots(z-z_m)}{(z-p_1)(z-p_2)\cdots(z-p_n)} \]

则在 MATLAB 中，都可直接用向量 z,p,k 构成的矢量组 [z,p,k] 表示系统，即

\[z=[z_0,z_1,\ldots,z_m] \]
在 MATLAB 中，用函数 zpk() 来建立控制系统的零极点增益模型，调用格式如下：

```
sys = zpk(z, p, k)
sys = zpk(z, p, k, Ts)
sys = zpk(othersys)
```

- `sys = zpk(z, p, k)` 返回的变量 `sys` 为连续系统的零极点增益模型。
- `sys = zpk(z, p, k, Ts)` 返回的变量 `sys` 为离散系统的零极点增益模型，Ts 含义同前。
- `sys = zpk(othersys)` 将任意的控制系统对象转换成零极点增益模型。

3. 状态空间模型

设连续系统的状态空间模型为

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t)
\end{align*}
\]

设离散系统的状态空间模型为

\[
\begin{align*}
x(k+1) &= Ax(k) + Bu(k) \\
y(k) &= Cx(k) + Du(k)
\end{align*}
\]

在 MATLAB 中，连续与离散系统都可直接用矩阵组 `[A, B, C, D]` 表示系统。

在 MATLAB 中，用函数 `ss()` 来建立系统的状态空间模型，调用格式如下：

```
sys = ss(othersys)  % 将任意的控制系统对象转换成状态空间模型
sys = ss(a, b, c, d)  % 返回的变量 sys 为连续系统的状态空间模型
sys = ss(a, b, c, d, Ts)  % 返回的变量 sys 为离散系统的状态空间模型，Ts 含义同前
```

4. 三种系统数学模型之间的转换

解决实际问题时，常常需要对自控系统的数学模型进行转换，MATLAB 提供了用于转换的函数，见表 8-3。

<table>
<thead>
<tr>
<th>函数名</th>
<th>函数功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>ss2tf</td>
<td>将系统状态空间模型转换为传递函数模型</td>
</tr>
<tr>
<td>ss2zp</td>
<td>将系统状态空间模型转换为零极点增益模型</td>
</tr>
<tr>
<td>tf2ss</td>
<td>将系统传递函数模型转换为状态空间模型</td>
</tr>
<tr>
<td>tf2zp</td>
<td>将系统传递函数转换为零极点增益模型</td>
</tr>
<tr>
<td>zp2ss</td>
<td>将系统零极点增益模型转换为状态空间模型</td>
</tr>
<tr>
<td>zp2tf</td>
<td>将系统零极点增益模型转换为传递函数模型</td>
</tr>
</tbody>
</table>
5. 环节结构图的化简

1）环节串联连接的化简

$$G(s) = \frac{num(s)}{den(s)}, \quad G_2(s) = \frac{num_2(s)}{den_2(s)}$$

则两个环节串联连接的等效传递函数为

$$G(s) = G_1(s)G_2(s) = \frac{num(s)num_2(s)}{den(s)den_2(s)}$$

在 MATLAB 中，实现两个环节传递函数串联连接的运算为

```matlab
sys1=tf(num1,den1)
sys2=tf(num2,den2)
sys=sys1*sys2
```

2）环节并联连接的化简

并联模型如图 8-3 所示。
实现两个环节传递函数串联连接的运算为

```matlab
sys=sys1+sys2
```

3）反馈环节的化简

反馈模型如图 8-4 所示。
实现反馈环节化简的运算为

```matlab
sys=feedback(sys1,sys2,sign)
```

式中 sign 为反馈符号，‘+’ 表示正反馈，‘-’ 为负反馈。默认为 ‘-’。

6. 用 SIMULINK 仿真工具建模

MATLAB 集成有 SIMULINK 工具箱，为用户提供了用框图进行系统建模的图形窗口。
1）建立新的结构图文件
在 matlab 环境下，点击 simulink 图标，或输入命令 simulink，启动 simulink 程序，出现 Simulink
模块库，如图 8-5 所示。

![SIMULINK 窗口](image)

点击或选择“File”菜单中的“New”选项下的子选项“Model”，出现“untitled”空白文档。

2）打开结构图模块组
在 Simulink Library Browser 中，点击 simulink 边上的“+”就有下列模块组:

Sources	% 输入信号单元模块组
Sinks	% 数据输出单元模块组
Contionuous	% 线性单元模块组
Discrete	% 离散单元模块组
......	

用鼠标单击任何一个模块组的图标，即可打开该模块组，从中选择仿真实验所需的单元模块。

3）建立用户的仿真结构图
将所需的结构图模块用鼠标拖到新建立的结构图文件的空白处，依次完成仿真结构图。用鼠标作结构图单元之间的连线，按结构图模块的信号连接关系，完成仿真试验的结构图。

（1）连线方法：一般是选中一个输出口，按下鼠标左键拖动至另一个模块的输入口，快捷的方法是先单击选中源模块，按下 Ctrl 键，再单击目标模块。画信号的分支线，用鼠标右键单击信号线并拖动。

（2）模块的旋转和翻转：选中模块，右击鼠标，打开 Format 子菜单，选择 Flip Block、Rotate Block、Flip Name 等完成响应的功能。

4）结构图单元参数设置
用鼠标器双击任何一个结构图单元即激活结构图单元的参数设置窗口。

5）仿真参数设置
选择“simulink”菜单项中的“Simulink parameters”，即出现仿真参数设置子窗口，用于设
置仿真参数，例如，仿真起始时间，仿真终止时间，仿真步长，允许误差，返回变量名称等。

6）仿真操作
选中“simulink”中的“Start”启动系统的仿真。在系统仿真中如显示器不能很好地展现波形，可以随时修改显示器的定标，直到满意为止。

三、实验内容
(1) 练习上面介绍的各种函数和命令。
(2) 给定控制系统的传递函数为
\[
G(s) = \frac{3}{s^3 + 3s^2 + 5s + 7}
\]
在MATLAB中建立该系统的传递函数模型、零极点增益模型和状态变量模型。
(3) 在SIMULINK中建立如图8-6所示的结构:

① 设置SIMULINK仿真参数，观察示波器的波形。
② 换用其他输入信号，观察示波器的波形。
③ 用命令方式求出上图的闭环传递函数。

实验六 控制系统的稳定性分析实验

一、实验目的
(1) 学习控制系统稳定性分析的MATLAB实现。
(2) 掌握控制系统的稳定判据。

二、相关知识
1. 控制系统的特征多项式与特征方程
控制系统传递函数为

线性系统的特征方程为
\[
D(s) = a_0s^n + a_1s^{n-1} + \ldots + a_{n-1}s + a_n = 0
\]

2. 控制系统的稳定性判据
稳定判据的方法有代数稳定判据、根轨迹法和Bode图法判定系统的稳定性等。
3. 有关的 MATLAB 函数

roots(P): 是求多项式根函数。P 为特征多项式降幂排列的系数向量。
rlocus(num,den,k): 作系统的根轨迹函数，无开环增益 k，则 k 的范围自动设定；有 k，则 k 的范围可以由人工给定。

[k,poles]=rlocfind(num,den)，执行该命令前，先作根轨迹图，会出现提示，要求在根轨迹上选一点，会出现“+”标记。在 MATLAB 命令窗口会有 k 和 poles 的值。

[Gm,Pm,Wcp,Wcg]=margin(sys0): 用命令得到系统 sys0 的频域性能指标;
margin(sys0): MATLAB 绘制系统的伯德图，计算伯德图上的稳定裕量，并将计算结果表示在图的上方。
bode(sys0): MATLAB 绘制系统的伯德图，但无系统的分析结果。

4. m 文件和函数

m 文件是使用 MATLAB 语言编写的程序代码文件。之所以称为 m 文件，是因为这种文件都是以“.m”作为文件的扩展名。我们可以通过任何文本编辑器来生成或编辑 m 文件，但是在 MATLAB 提供的编辑器里生成或编辑 m 文件最为简单、方便且高效。m 文件可以分为两种类型，一种是脚本（或称命令）文件，另一种是函数文件。

脚本文件类似于 C 语言的进程，就是将一系列命令写在一个文件中，它的书写方法与命令行执行程序的方式相同。

函数也是以“.m”作为文件的扩展名。不同于 m 文件，函数带有输入输出参数，书写格式为

```matlab
function [返回变量列表]=函数名(输入变量列表)
%注释行
主程序体
```

其中 function 为函数的保留字，函数名也要符合变量的命名规则，保存函数文件时，文件名应与函数名同名。注释行是对函数的功能、调用格式和参数的说明。

三、实验内容及要求

（1）已知系统的开环传递函数:

\[G(s) = \frac{100(s + 2)}{s(s + 1)(s + 20)} \]

用求根的方法来判别闭环系统的稳定性。

编写程序，求特征多项式及其根（不能手工计算），判断系统的稳定性。

（2）已知一个单位负反馈开环传递函数 \(G(s) \)，当 \(K \) 分别为 1、5、10、20 时闭环系统的稳定性。

\[G(s) = K \frac{(s + 3)}{s(s + 5)(s + 6)(s^2 + 2s + 2)} \]

以 \(K \) 为输入参数，编写函数，画出上述 \(K \) 值对应的闭环根，并判断系统的稳定性。
自动控制原理

（3）已知单位负反馈系统的传递函数为
\[G_1(s) = \frac{2.7}{s^3 + 5s^2 + 4s}, \quad G_2(s) = \frac{2.7}{s^3 + 5s^2 - 4s} \]

用伯德图法判断闭环系统的稳定性。
编写程序，并运行程序，得出相关的数据。

实验七 控制系统的时域分析实验

一、实验目的

（1）学习控制系统时域分析的 MATLAB 实现。
（2）掌握控制系统的时域响应及性能指标。

二、相关知识

有关的 MATLAB 函数:

- `damp(den)`
- `step(sys)`
- `[y,t,x]=step(sys)`
- `impulse(sys)`
- `[y,t,x]=impulse(sys)`
- `initial(sys,x0)`
- `[y,t,x]=initial(sys,x0)`
- `lsim(sys,u,t)`
- `[y,t]= lsim(sys,u,t)`

对于离散系统，相应的命令分别是 `dstep`、`dimpulse`、`dinitial`、`dlsim`。

三、实验内容及要求

（1）利用 help 命令学习上述函数命令的用法，自行练习。
（2）已知一阶系统传递函数为
\[\phi(s) = \frac{1}{s+1} \]
输入为正弦信号，求输出。编写程序，将输入和响应曲线画于同一图上。
（3）已知二阶系统传递函数为
\[\phi(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]
当 \(\omega_n = 1 \) 时，试计算当阻尼比 \(\zeta \) 值从 0.1 到 1 时二阶系统的单位阶跃响应。编写程序，将响应曲线画于同一图上，并加上标注。
（4）二阶系统为
\[\phi(s) = \frac{10}{s^2 + 2s + 10} \]
编写程序，求系统的根、阻尼比、无阻尼振荡频率和响应曲线，计算（注意不是从响应图
上读出）出峰值、峰值时间和过渡时间，并与理论公式计算值比较。

<table>
<thead>
<tr>
<th></th>
<th>实际值</th>
<th>理论值</th>
</tr>
</thead>
<tbody>
<tr>
<td>峰值</td>
<td></td>
<td>±5%</td>
</tr>
<tr>
<td>峰值时间</td>
<td></td>
<td>±2%</td>
</tr>
<tr>
<td>过渡时间</td>
<td>±5%</td>
<td></td>
</tr>
</tbody>
</table>

（5）编写函数，输入参数为对象模型 sys，求该对象模型的单位斜坡输入响应，将输入和输出曲线画于同一图上。提示：sys 的分子多项式为 sys.num{1}，分母多项式为 sys.den{1}。

实验八 控制系统的根轨迹分析

一、实验目的

（1）学习控制系统根轨迹分析的 MATLAB 实现。
（2）利用根轨迹进行系统分析。

二、相关知识

有关的 MATLAB 函数如下：

```matlab
pzmap(sys);  
rlocus(sys);  
[r,k]=rlocus(sys);  
rlocfnd(sys);  
[k,r]=rlocfnd(sys);
```

注意：没有离散系统对应的命令“drlocus”

三、实验内容及要求

（1）利用在线帮助学习上述函数命令的用法，自行练习。
（2）已知系统的开环传递函数为

\[G(s)H(s) = \frac{K(s+1)}{s(s-1)(s^2 + 4s + 20)} \]

试确定使系统稳定的 K 值范围。

提示：为了使坐标点定位准确，可用 axis 命令将图局部放大。

（3）上题中，确定使系统阻尼比为 0.5 的 K 值和这时的闭环特征根。

注意：不能用目测定位。

实验九 控制系统的频域分析

一、实验目的

（1）学习控制系统频域分析的 MATLAB 实现。
（2）利用频率响应进行系统分析。
二、相关知识

有关的 MATLAB 函数:

```matlab
Bode(G);
[m,p,w]=bode(G);
Margin(G);
[Gm,Pm,Wg,Wp]=margin(G);
Nyquist(G);
[re,im,w]=nyquist(G);
```

对于离散系统，相应的命令分别是 dbode、dnyquist，没有“dmargin”命令，要利用 margin 命令，先用[m,p,w]=dbode(G)，再用 margin(m,p,w)命令。

三、实验内容及要求

（1）利用在线帮助学习上述函数命令的用法，自行练习。
（2）一单位负反馈系统

\[G(s) = \frac{3}{s^3 + 2s^2 + 3s + 2} \]

画出其 bode 图，求其增益裕量和相位裕量，判断其稳定性和动态性能，用 nyquist 图分析，是否与前述分析相符。若开环增益放大 1.5 倍，又怎样？利用时域分析法验证之。

实验十 某函数的编写及应用

一、实验目的

（1）学习某函数的编写方法。
（2）利用某函数在 Simulink 环境中实现复杂模块。

二、相关知识

Simulink 提供了一个十分易用的仿真平台，但在使用过程中会发现有些过程或对象用现成的 Simulink 模块不易搭建，远不如 m 文件和函数灵活和强大。事实上，Simulink 也提供了一个解决方案——某函数，类似于普通函数的功能，这大大扩展了 Simulink 的仿真能力。

1. 用 MATLAB 语句编写某函数

某函数还可以用 C、C++、Fortran 等语言编写。用 MATLAB 语句编写某函数引导语句为:

```matlab
function [sys,x0,str,ts]=funname (t,x,u,flag,p1,p2,...)
```

其中 funname 为函数名，t, x, u 分别为时间、状态和输入信号，flag 为标志位，这四个参数是固定的，后面几个参数为输入参数。flag 的值为 0、1、2、3、4 和 9，分别对应一个内部过程，其关系如表 8-4 所示。

```matlab
function [sys,x0,str,ts]=funname (t,x,u,flag,p1,p2,...)
```
表 8-4 function 函数 flag 的值对照表

<table>
<thead>
<tr>
<th>Flag 取值</th>
<th>过程</th>
<th>调用函数名</th>
<th>返回参数</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>初始化</td>
<td>mdlInitializeSizes</td>
<td>sys 为初始化参数，x0, str, ts 如其定义</td>
</tr>
<tr>
<td>1</td>
<td>连续状态计算</td>
<td>mdlDerivatives</td>
<td>sys 返回连续状态</td>
</tr>
<tr>
<td>2</td>
<td>离散状态计算</td>
<td>mdlUpdate</td>
<td>sys 返回离散状态</td>
</tr>
<tr>
<td>3</td>
<td>输出信号计算</td>
<td>mdlOutputs</td>
<td>sys 返回系统输出</td>
</tr>
<tr>
<td>4</td>
<td>下一步仿真时刻</td>
<td>mdlGetTimeOfNextVarHit</td>
<td>sys 返回下一步仿真时间</td>
</tr>
<tr>
<td>9</td>
<td>终止仿真设定</td>
<td>mdlTerminate</td>
<td>无</td>
</tr>
</tbody>
</table>

在仿真过程中，flag=0（初始化过程）仅出现一次，其他值（过程）在每个采样周期循环出现，在每个过程中要完成一些功能，只要在这个过程中写上适当的程序代码即可。函数主程序通常如下（参见 Simulink 自带文件 sfuntmpl.mdl）：

```
Switch  flag
Case 0,
    [sys,x0,str,ts]=mdlInitializeSizes;
Case 1,
    sys=mdlDerivatives(t,x,u);
Case 2,
    sys=mdlUpdate(t,x,u);
Case 3,
    sys=mdlOutputs(t,x,u);
Case 4,
    sys=mdlGetTimeOfNextVarHit(t,x,u);
Case 9,
    sys=mdlTerminate(t,x,u);
otherwise
    error(['Unhandled flag = ',num2str(flag)]);
end
```

调用的各函数写在主程序之后，函数名是 Simulink 推荐的函数名，不是强制性的，我们也可以用其他函数名，更简单地，不用函数，把过程直接写在主程序中。其中 flag 为 0 和 3 的过程必须编写程序，其他过程根据实际需要可忽略。初始化过程的编写有一定的规范，如下所示：

```
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates= 1;       % 连续状态的个数
sizes.NumDiscStates = 0;      % 离散状态的个数
sizes.NumOutputs   = 1;       % 输出变量个数
sizes.NumInputs    = 2;       % 输入变量个数
sizes.DirFeedthrough = 1;     % 输入是否直接至输出端，通常为 1
sizes.NumSampleTimes = 1;     % 采样周期个数，通常为 1。S 函数支持多采样周期系统
```

自动控制原理

```matlab
sys = simsizes(sizes);
x0  = [];   % 初始化状态
str  = [];   % 说明字符串变量, 通常为空串
ts   = [-1 0];   % 采样周期初始化
```

初始化需提供 S 函数的一些特定信息, 包括输入/输出变量和状态的个数等, 这通过一个结构变量实现。第一句 sizes = simsizes 通过 simsizes 函数定义一个结构变量, 该变量有 6 个结构元素, 如上所示, 按具体要求设置完成后, 通过 sys = simsizes(sizes)语句赋给 sys 参数。除了 sys 外, 还应设置系统的初始状态变量 x0、说明变量 str 和采样周期变量 ts, 其中 ts 为双列矩阵, 每一行对应一个采样周期。对连续系统和有单个采样周期的系统来说, 该变量为[t1,t2], 其中 t1 为采样周期, t1=-1 则将继承输入信号的采样周期, t2 为偏移量, 一般取 0。

2．S 函数的调用

建立 Simulink 仿真框图如图 8-7 所示时, 选择 S-Function 模块 (MATLAB6.5/Simulink5 在 User-Defined Function 模块库), 双击 S-Function 模块, 会弹出一个参数设置对话框, 如下图所示, 在 S-Function name 栏内填写 S 函数文件名, 就可以建立起该模块和我们编写的 S 函数文件之间的联系, 在 S-Function parameters 栏内给出 S 函数的输入参数, 参数可以是常数, 也可以是变量名, 如果是变量名, 那么仿真前须在命令窗口中赋值。

![Simulink 仿真框图](image)

三、实验内容

(1) 编写 S 函数, 实现如图 8-8 所示的死区非线性模块功能
编写 S 函数如下:

```matlab
function [sys,x0,str,ts] = sqnl(t,x,u,flag,s1)  % 死区非线性
    % s1 为死区环值
    switch flag,
        case 0,
            [sys,x0,str,ts]=mdlInitializeSizes;
        Case 1,
            sys=x;
        case 3,
            sys=mdlOutputs(t,x,u,s1);
        case {1,2,4,9}
            sys=[];
        otherwise
            error(['Unhandled flag = ',num2str(flag)]);
    end

function [sys,x0,str,ts]=mdlInitializeSizes
    sizes = simsizes;
    sizes.NumContStates  = 0;
    sizes.NumDiscStates = 0;
    sizes.NumOutputs      = 1;
    sizes.NumInputs      = 1;
    sizes.DirFeedthrough = 1;
    sizes.NumSampleTimes = 1;     % at least one sample time is needed
    sys = simsizes(sizes);
    x0=[];
    str=[];
    ts=[-1 0];

function sys=mdlOutputs(t,x,u,s1)
    if abs(u)>=s1,
        if u>0,sys=u-s1;
        else sys=u+s1;
    end
    else  sys=0;
    end
```

图 8.8 非线性死区示意
按上面介绍的方法，建立 Simulink 模块，运行验证。

2. 编写 S 函数，实现积分分离 PID 控制功能

系统框图如图 8-9 所示。

编写 S 函数如下：

```matlab
function [sys,x0,str,ts]=jfflpid(t,x,u,flag,Kp,Ti,Td,T,E)
% 积分分离 PID S-函数
% T 为采样周期，E 为积分分离阈值
global umax Ki Kd uk_1 ek_1 ek_2 B  %umax 为最大控制量，B 为积分分离算子
switch flag,
    case 0, % Initialization 初始化部分
        sizes=simsizes;
        sizes.NumContStates=0; sizes.NumDiscStates=0;
        sizes.NumOutputs=1; sizes.NumInputs=1;
        sizes.DirFeedthrough=1; sizes.NumSampleTimes=1;
        sys=simsizes(sizes); x0=[]; str=[]; ts=[T 0];
        umax=50; uk_1=0; ek_1=0; ek_2=0;
        Ki=Kp*T/Ti; Kd=Kp*Td/T; % 控制器参数初始化
    case 3, % Outputs 控制器输出计算
        ek=u; % 获取误差
        if abs(ek)<=E, B=1; else B=0; end
        uk=uk_1+Kp*(ek-ek_1)+B* Ki*ek+Kd*(ek-2*ek_1+ek_2);
        if uk>umax, uk=umax; end
        if uk<-umax, uk=-umax; end
        uk_1=uk; ek_2=ek_1; ek_1=ek;
        sys=[uk];
    case {1,2,4,9}
        sys=[];
    otherwise
        error(["无效的标志 flag=",num2str(flag)]);
end
```

(1) 建立 Simulink 模块，在 MATLAB 命令窗口给变量赋值（注意大小写）：Kp=2.9; Ti=0.65; Td=1.65; T=0.03; E=100（E 为积分分离阈值，取一个很大值相当于没有积分分离作用），运行模块，注意响应曲线。
(2) 改变 E 值，使之为 1（输入阶跃信号值），运行模块，观察响应曲线。
(3) 第二个响应的稳态值为什么不等定值？
(4) 如果将采样周期改为 0.3，又会怎样？
(5) 采取什么办法可避免上述现象？

习 题

8-1 求解下列线性方程，并进行解的验证：
\[
\begin{bmatrix}
7 & 2 & 1 & -2 \\
9 & 15 & 3 & -2 \\
-2 & -2 & 11 & 5 \\
1 & 3 & 2 & 13
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} = \begin{bmatrix}
4 \\
7 \\
-1 \\
0
\end{bmatrix}
\]

8-2 进行下列计算，尽量不用循环语句求：
(1) \(k = \sum_{i=0}^{\infty} 2^i \)
(2) 求出 \(y = x \sin x \) 在 \(0 < x < 100 \) 条件下的每个峰值。

8-3 绘制下列图形：
(1) \(\sin \left(\frac{1}{t} \right), -1 < t < 1 \)
(2) \(1 - \cos^3 (7t) \)

8-4 已知元件的实验数据如下，拟合这一数据，并尝试给出其特性方程。

<table>
<thead>
<tr>
<th>x</th>
<th>0.0100</th>
<th>1.0100</th>
<th>2.0100</th>
<th>3.0100</th>
<th>4.0100</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>2.5437</td>
<td>7.8884</td>
<td>9.6242</td>
<td>11.6071</td>
<td>11.9727</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>5.0100</th>
<th>6.0100</th>
<th>7.0100</th>
<th>8.0100</th>
<th>9.0100</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>13.2189</td>
<td>14.2679</td>
<td>14.6134</td>
<td>15.4045</td>
<td>15.0805</td>
</tr>
</tbody>
</table>

8-5 分别使用解微分方程方法、控制工具箱、SIMULINK 求解具有如下闭环传递函数的系统的阶跃响应。
\[
\Phi(s) = \frac{10}{s^4 + 8s^3 + 36s^2 + 40s + 10}
\]

8-6 已知系统的闭环传递函数，试用多种方法分析该系统的稳定性。
\[
\Phi(s) = \frac{6s^3 + 26s^2 + 6s + 20}{s^4 + 3s^3 + 4s^2 + 2s + 2}
\]

8-7 某小功率随动系统动态结构如图 8-10 所示，已知：\(T_1 = 0.01 \), \(T_2 = 0.05 \), \(K_0 = 1 \),
\(K_1 = 300 \), \(K_2 = 1 \), \(K_c = 0.08 \)。若系统输入分别为 \(\theta_e(t) = 1(t) \), \(\theta_e(t) = t \), \(\theta_e(t) = 1(t) - 1(t - 1.5) \)
试用 SIMULINK 分析系统的输出 \(\theta_c(t) \)。

8-8 设某商店 1—5 月的营业额分别是 25 万元、32 万元、16 万元、19 万元、22 万元，对该商店的 1—5 月的营业额画一立体分离的饼图，文字标注为“月份、营业额、百分比”。其中，月份为汉字，百分比保留一位小数，图形要求美观。（提示：用到的函数有 pie3、round、num2str、strcat）
8-9 已知传递函数为

\[G(s) = \frac{100e^{-0.01s}}{s(0.1s + 1)(0.01s + 1)} \]

编写 m 文件，绘制伯德图，要求有题头、x 轴标注、y 轴标注和网格线。

8-10 编写两个函数，分别用欧拉法和梯形法求解微分方程 \(\frac{dy}{dt} = -y \), \(y(0) = 1 \)。步长和时间区间（起始值和终止值）为函数的输入参数。并在同一个图形窗口中画出精确解和上述两种方法解的曲线，加上图例。

8-11 某反馈控制系统的开环传递函数为

\[G(s)H(s) = \frac{K}{s(s + 4)(s^2 + 4s + 20)} \]

试绘制其根轨迹。

8-12 反馈控制系统的开环传递函数为

\[G(s)H(s) = \frac{K}{s(s + 1)(s + 5)} \]

试求取当 \(K=10 \) 时的相位裕量和增益裕量，并画出其伯德图。

8-13 某单位反馈系统的开环传递函数为

\[G(s)H(s) = \frac{1}{s(0.1s + 1)(0.02s + 1)(0.01s + 1)(0.005s + 1)} \]

若性能指标要求如下：\(\gamma = 45^\circ \), \(k_v = 200 \), \(\omega_n = 13.5 \), 使确定校正装置。

8-14 若某过程控制系统如图 8-11 所示，试设计 PID 调节器参数，使该系统动态性能达到最佳。

8-15 在实验十中，试改进 PID 控制器的 S 函数，微分环节采用不完全微分，并运行验证。
<table>
<thead>
<tr>
<th>序号</th>
<th>(r(t)) 或 (x(t))</th>
<th>(F(s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>单位脉冲 (\delta(t))</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>单位阶跃 (u(t))</td>
<td>(\frac{1}{s})</td>
</tr>
<tr>
<td>3</td>
<td>(t)</td>
<td>(\frac{1}{s^2})</td>
</tr>
<tr>
<td>4</td>
<td>(e^{-at})</td>
<td>(\frac{1}{s+a})</td>
</tr>
<tr>
<td>5</td>
<td>(te^{-at})</td>
<td>(\frac{1}{(s+a)^2})</td>
</tr>
<tr>
<td>6</td>
<td>(\sin \omega t)</td>
<td>(\frac{s}{s^2 + \omega^2})</td>
</tr>
<tr>
<td>7</td>
<td>(\cos \omega t)</td>
<td>(\frac{s}{s^2 + \omega^2})</td>
</tr>
<tr>
<td>8</td>
<td>(t^n (n=1,2,3,\cdots))</td>
<td>(\frac{n!}{s^{n+1}})</td>
</tr>
<tr>
<td>9</td>
<td>(t^n e^{-at} (n=1,2,3,\cdots))</td>
<td>(\frac{n!(s+a)^{n-1}}{(s+a)^n})</td>
</tr>
<tr>
<td>10</td>
<td>(\frac{1}{b-a}(e^{-at} - e^{-bx}))</td>
<td>(\frac{1}{(s+a)(s+b)})</td>
</tr>
<tr>
<td>11</td>
<td>(\frac{1}{b-a}(be^{-at} - ae^{-bx}))</td>
<td>(\frac{s}{(s+a)(s+b)})</td>
</tr>
<tr>
<td>12</td>
<td>(\frac{1}{ab}[1 + \frac{1}{a-b}(be^{-at} - ae^{-bx})])</td>
<td>(\frac{1}{s(s+a)(s+b)})</td>
</tr>
<tr>
<td>13</td>
<td>(e^{-at} \sin \omega t)</td>
<td>(\frac{s+a}{(s+a)^2 + \omega^2})</td>
</tr>
<tr>
<td>14</td>
<td>(e^{-at} \cos \omega t)</td>
<td>(\frac{s+a}{(s+a)^2 + \omega^2})</td>
</tr>
<tr>
<td>15</td>
<td>(\frac{1}{a^2}(at-1+e^{-at}))</td>
<td>(\frac{1}{s^2(s+a)})</td>
</tr>
<tr>
<td>16</td>
<td>(\frac{\omega_0}{\sqrt{1-\zeta^2}} e^{-\omega_0 \sqrt{1-\zeta^2}t} (\zeta < 1))</td>
<td>(\frac{\omega_0^2}{s^2 + 2\zeta \omega_0 s + \omega_0^2})</td>
</tr>
<tr>
<td>17</td>
<td>(\frac{-1}{\sqrt{1-\zeta^2}} e^{-\omega_0 \sqrt{1-\zeta^2}t + \varphi})</td>
<td>(\frac{s}{s^2 + 2\zeta \omega_0 s + \omega_0^2})</td>
</tr>
<tr>
<td>18</td>
<td>(\varphi = \tan^{-1} \frac{\sqrt{1-\zeta^2}}{\zeta})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\varphi = \tan^{-1} \frac{\sqrt{1-\zeta^2}}{\zeta})</td>
<td></td>
</tr>
</tbody>
</table>

\(\zeta \) 为阻尼系数
附录 B 常用函数的 Z 变换表

<table>
<thead>
<tr>
<th>序号</th>
<th>$F(s)$</th>
<th>$x(t)$或$x(k)$</th>
<th>$F(z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$\delta(t)$</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$e^{-\alpha s}$</td>
<td>$\delta(t-kT)$</td>
<td>z^{-k}</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{1}{s}$</td>
<td>$l(t)$</td>
<td>$\frac{z}{z-1}$</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{1}{s^2}$</td>
<td>t</td>
<td>$\frac{Tz}{(z-1)^2}$</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{1}{s^3}$</td>
<td>$\frac{t^2}{2!}$</td>
<td>$\frac{T^2z(z+1)}{2(z-1)^3}$</td>
</tr>
<tr>
<td>6</td>
<td>$\frac{1}{s^4}$</td>
<td>$\frac{t^3}{3!}$</td>
<td>$\frac{T^3z(z^2+4z+1)}{3(z-1)^4}$</td>
</tr>
<tr>
<td>7</td>
<td>$\frac{1}{se^{\alpha s}}$</td>
<td>$\frac{e^\alpha}{n!}$</td>
<td>$\frac{T^n zR_n(z)}{n!(z-1)^{n+1}}$</td>
</tr>
<tr>
<td>8</td>
<td>$\frac{1}{s+a}$</td>
<td>$e^{-\alpha t}$</td>
<td>$\frac{z}{z-e^{-\alpha t}}$</td>
</tr>
<tr>
<td>9</td>
<td>$\frac{1}{(s+a)(s+\beta)}$</td>
<td>$\frac{1}{\alpha-\beta}(e^{-\alpha t}-e^{-\beta t})$</td>
<td>$\frac{1}{\alpha-\beta}\left(\frac{z}{z-e^{-\alpha t}}-\frac{z}{z-e^{-\beta t}}\right)$</td>
</tr>
<tr>
<td>10</td>
<td>$\frac{1}{s(s+a)}$</td>
<td>$\frac{1}{\alpha}(1-e^{-\alpha t})$</td>
<td>$\frac{1}{\alpha}(1-e^{-\alpha t})z$</td>
</tr>
<tr>
<td>11</td>
<td>$\frac{1}{s^2(s+a)}$</td>
<td>$\frac{1}{\alpha}\left(t-1-e^{-\alpha t}\right)$</td>
<td>$\frac{1}{\alpha}\left[T_2z(1-z^{-1})z(1-z^{-\alpha t})\right]$</td>
</tr>
<tr>
<td>12</td>
<td>$\frac{1}{(s+a)^2}$</td>
<td>$e^{-\alpha t}$</td>
<td>$\frac{T_2e^{-\alpha t}}{(z-e^{-\alpha t})^2}$</td>
</tr>
<tr>
<td>13</td>
<td>$\frac{\omega}{s^2+\omega^2}$</td>
<td>$\sin \omega t$</td>
<td>$\frac{z\sin \omega t}{z^2-2z \cos \omega t+1}$</td>
</tr>
<tr>
<td>14</td>
<td>$\frac{s}{s^2+\omega^2}$</td>
<td>$\cos \omega t$</td>
<td>$\frac{z(z-\cos \omega t)}{z^2-2z \cos \omega t+1}$</td>
</tr>
<tr>
<td>15</td>
<td>$\frac{\omega}{(s+\alpha)^2+\omega^2}$</td>
<td>$e^{-\alpha t}\sin \omega t$</td>
<td>$\frac{z\omega e^{-\alpha t}\sin \omega t}{z^2-2\alpha e^{-\alpha t}\cos \omega t+e^{-2\omega^2\alpha}}$</td>
</tr>
<tr>
<td>16</td>
<td>$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$</td>
<td>$e^{-\alpha t}\cos \omega t$</td>
<td>$\frac{z^2-ze^{-\alpha t}\cos \omega t}{z^2-2\alpha e^{-\alpha t}\cos \omega t+e^{-2\omega^2\alpha}}$</td>
</tr>
<tr>
<td>17</td>
<td>$\frac{1}{s \ln a}$</td>
<td>α^t</td>
<td>$\frac{z}{z-\alpha}$</td>
</tr>
<tr>
<td>18</td>
<td>$\frac{1}{s + \ln a}$</td>
<td>$\alpha^t \cos k$</td>
<td>$\frac{z}{z+\alpha}$</td>
</tr>
<tr>
<td>19</td>
<td>$\frac{\alpha}{s^3-\alpha^3}$</td>
<td>shat</td>
<td>$\frac{z \text{shat}}{z^2-2z \text{shat}+1}$</td>
</tr>
<tr>
<td>20</td>
<td>$\frac{s}{s^2+\alpha^2}$</td>
<td>chat</td>
<td>$\frac{z(z-\text{chat})}{z^2-2z \text{chat}+1}$</td>
</tr>
<tr>
<td>英文</td>
<td>中文</td>
<td>英文</td>
<td>中文</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Absolute error</td>
<td>绝对误差</td>
<td>Absolute value</td>
<td>绝对值</td>
</tr>
<tr>
<td>Accuracy</td>
<td>精确度</td>
<td>Activate</td>
<td>启动，触发</td>
</tr>
<tr>
<td>Active electric network</td>
<td>有源网络</td>
<td>Actuating signal</td>
<td>作用信号，启动信号</td>
</tr>
<tr>
<td>Actuator</td>
<td>执行机构、调节器、激励器</td>
<td>Adjust</td>
<td>调整</td>
</tr>
<tr>
<td>Adaptive control</td>
<td>自适应控制</td>
<td>Algebraic operations</td>
<td>代数运算</td>
</tr>
<tr>
<td>Amplifier</td>
<td>放大器</td>
<td>Amplitude</td>
<td>振幅、幅值</td>
</tr>
<tr>
<td>Analog computer</td>
<td>模拟计算机</td>
<td>Analog signal</td>
<td>模拟信号</td>
</tr>
<tr>
<td>Angle condition</td>
<td>相角条件</td>
<td>Angle of arrival</td>
<td>入射角</td>
</tr>
<tr>
<td>Angle of departure</td>
<td>出射角</td>
<td>Angular acceleration</td>
<td>角加速度</td>
</tr>
<tr>
<td>Argument</td>
<td>幅角</td>
<td>Armature</td>
<td>电枢</td>
</tr>
<tr>
<td>Asymptote</td>
<td>渐近线</td>
<td>Asymptotic stable</td>
<td>渐近稳定的</td>
</tr>
<tr>
<td>Automatic control</td>
<td>自动控制</td>
<td>Attenuation</td>
<td>衰减</td>
</tr>
<tr>
<td>Auxiliary equation</td>
<td>辅助方程</td>
<td>Backlash</td>
<td>间隙、回差</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>带宽</td>
<td>Bang-bang control</td>
<td>砰-砰控制、继电控制</td>
</tr>
<tr>
<td>Be proportional to</td>
<td>与……成比例</td>
<td>Biocybernetics</td>
<td>生物控制论</td>
</tr>
<tr>
<td>Block diagram</td>
<td>框图、方块图、结构图</td>
<td>Bode plot</td>
<td>波特图</td>
</tr>
<tr>
<td>Branch</td>
<td>分支、支路</td>
<td>Breakaway points</td>
<td>分离点</td>
</tr>
<tr>
<td>Bump</td>
<td>撞击、扰动</td>
<td>By-pass</td>
<td>旁路</td>
</tr>
<tr>
<td>CACSD(Computer-Aided Control System Design)</td>
<td>控制系统计算机辅助设计</td>
<td>CACSE(Computer-Aided Control of System Engineering)</td>
<td>控制系统计算机辅助工程</td>
</tr>
<tr>
<td>CAD(computer aided design)</td>
<td>计算机辅助设计</td>
<td>Cascade compensation</td>
<td>串联补偿校正</td>
</tr>
<tr>
<td>Cascade control</td>
<td>串级控制</td>
<td>Channel</td>
<td>通道</td>
</tr>
<tr>
<td>Characteristic equation</td>
<td>特征方程</td>
<td>Characteristic gain locus</td>
<td>特征增益轨迹</td>
</tr>
<tr>
<td>Circuit</td>
<td>电路</td>
<td>Classical control theory</td>
<td>经典控制理论</td>
</tr>
<tr>
<td>Closed loop control system</td>
<td>闭环控制系统</td>
<td>Closed loop frequency response</td>
<td>闭环频率响应</td>
</tr>
<tr>
<td>Closed loop pole</td>
<td>闭环极点</td>
<td>Closed loop zero</td>
<td>闭环零点</td>
</tr>
<tr>
<td>Combinational control system</td>
<td>复合控制系统</td>
<td>Comparator</td>
<td>比较器</td>
</tr>
<tr>
<td>Comparing element</td>
<td>比较元件、比较环节</td>
<td>Compound control</td>
<td>复合控制</td>
</tr>
<tr>
<td>Compensation</td>
<td>补偿、校正</td>
<td>Complex plane</td>
<td>复平面</td>
</tr>
<tr>
<td>Conditional stability</td>
<td>条件稳定</td>
<td>Configuration</td>
<td>结构、配置、方案、组态</td>
</tr>
<tr>
<td>Constant M loci</td>
<td>等 M 闭</td>
<td>Continuous system</td>
<td>连续系统</td>
</tr>
<tr>
<td>Controlled variable</td>
<td>被控变量</td>
<td>Controlling machine</td>
<td>控制机</td>
</tr>
<tr>
<td>Control system</td>
<td>控制系统</td>
<td>Control valve</td>
<td>调节阀</td>
</tr>
<tr>
<td>Controllability</td>
<td>可控性、能控性</td>
<td>Conveyor</td>
<td>传送器、传送带、传送装置</td>
</tr>
<tr>
<td>Corner frequency</td>
<td>转折频率、交越频率</td>
<td>Correcting unit</td>
<td>执行器</td>
</tr>
<tr>
<td>Correction</td>
<td>校正</td>
<td>Coupling</td>
<td>搓合</td>
</tr>
<tr>
<td>英文</td>
<td>中文</td>
<td>英文</td>
<td>中文</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Criterion</td>
<td>判据、准则</td>
<td>Critical damping</td>
<td>临界阻尼</td>
</tr>
<tr>
<td>Cut off rate</td>
<td>剪切率</td>
<td>Cut off frequency</td>
<td>剪切频率</td>
</tr>
<tr>
<td>Cybernetics</td>
<td>控制论</td>
<td>Damped natural frequency</td>
<td>有阻尼自然频率</td>
</tr>
<tr>
<td>Damper</td>
<td>阻尼器</td>
<td>Damping factor</td>
<td>阻尼系数</td>
</tr>
<tr>
<td>Damping ratio</td>
<td>阻尼比</td>
<td>Dead band</td>
<td>死区</td>
</tr>
<tr>
<td>Dead time</td>
<td>纯延时、延迟时间</td>
<td>Decay</td>
<td>衰减、衰变</td>
</tr>
<tr>
<td>Decomposition</td>
<td>分解</td>
<td>Delay</td>
<td>落后</td>
</tr>
<tr>
<td>Delay element</td>
<td>滞后环节</td>
<td>Denominator</td>
<td>分母</td>
</tr>
<tr>
<td>Derivation action</td>
<td>微分作用</td>
<td>Derivative control</td>
<td>微分控制</td>
</tr>
<tr>
<td>Desired value</td>
<td>预期值、期望值</td>
<td>Determinant</td>
<td>行列式</td>
</tr>
<tr>
<td>Deviation</td>
<td>偏差</td>
<td>Differentiating junction</td>
<td>比较点</td>
</tr>
<tr>
<td>Differential equations</td>
<td>微分方程</td>
<td>Digital computer</td>
<td>数字计算机</td>
</tr>
<tr>
<td>Discrete-data system</td>
<td>离散数据系统</td>
<td>Disturbance</td>
<td>扰动、干扰</td>
</tr>
<tr>
<td>Disturbance rejection property</td>
<td>抗干扰特性</td>
<td>Dominate</td>
<td>主导</td>
</tr>
<tr>
<td>Duality</td>
<td>对偶性</td>
<td>Dynamic equation</td>
<td>动态方程</td>
</tr>
<tr>
<td>Dynamic error</td>
<td>动态误差</td>
<td>Dynamic process</td>
<td>动态过程</td>
</tr>
<tr>
<td>Equilibrium state</td>
<td>平衡状态</td>
<td>Eigenvalue</td>
<td>特征值</td>
</tr>
<tr>
<td>Eigenvector</td>
<td>特征向量</td>
<td>Element 元件、环节</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>误差</td>
<td>Error coefficient</td>
<td>误差系数</td>
</tr>
<tr>
<td>Error signal</td>
<td>误差信号</td>
<td>Even symmetry</td>
<td>偶对称</td>
</tr>
<tr>
<td>Exponential</td>
<td>指数、指数的、幂的</td>
<td>External description</td>
<td>外部描述</td>
</tr>
<tr>
<td>Extremum</td>
<td>极值</td>
<td>Feasibility</td>
<td>可行性、可能性、现实性</td>
</tr>
<tr>
<td>Feedback</td>
<td>反馈</td>
<td>Feedback control</td>
<td>反馈控制</td>
</tr>
<tr>
<td>Feedback element</td>
<td>反馈环节</td>
<td>Feedback path</td>
<td>反馈通道</td>
</tr>
<tr>
<td>Feedback path</td>
<td>前馈通路</td>
<td>Final controlling element</td>
<td>执行器</td>
</tr>
<tr>
<td>Final value</td>
<td>终值</td>
<td>First-order system</td>
<td>一阶系统</td>
</tr>
<tr>
<td>Focus</td>
<td>焦点</td>
<td>Following device</td>
<td>随动装置</td>
</tr>
<tr>
<td>Forward path</td>
<td>前向通路</td>
<td>Fraction</td>
<td>分数</td>
</tr>
<tr>
<td>Frequency</td>
<td>频率</td>
<td>Frequency domain</td>
<td>频域</td>
</tr>
<tr>
<td>Frequency response</td>
<td>频率响应</td>
<td>Frequency response characteristic</td>
<td>频率响应特性</td>
</tr>
<tr>
<td>Function</td>
<td>函数</td>
<td>Fuzzy control</td>
<td>模糊控制</td>
</tr>
<tr>
<td>Gain</td>
<td>增益</td>
<td>Gain margin</td>
<td>增益裕量、增益裕量</td>
</tr>
<tr>
<td>Gear backlash</td>
<td>齿轮间隙</td>
<td>General solution</td>
<td>通解</td>
</tr>
<tr>
<td>Graphical method</td>
<td>图解法</td>
<td>Guidance system</td>
<td>导向系统</td>
</tr>
<tr>
<td>Gravitation area</td>
<td>引力域</td>
<td>Gyro</td>
<td>陀螺</td>
</tr>
<tr>
<td>Harmonic</td>
<td>谐波、谐波量、谐振荡</td>
<td>Harmonic response</td>
<td>谐波响应</td>
</tr>
<tr>
<td>Holder</td>
<td>保持器</td>
<td>Homogeneous equation</td>
<td>齐次方程</td>
</tr>
<tr>
<td>Hurwitz determinant</td>
<td>赫尔维茨行列式</td>
<td>Hydraulic system</td>
<td>液压系统</td>
</tr>
<tr>
<td>Hysteresis error</td>
<td>回差</td>
<td>Hysteresis loop</td>
<td>磁滞回环</td>
</tr>
<tr>
<td>Idealized system</td>
<td>理想化系统</td>
<td>Identification</td>
<td>辨识</td>
</tr>
<tr>
<td>Impulse response</td>
<td>脉冲响应</td>
<td>Industrial robot</td>
<td>工业机器人</td>
</tr>
<tr>
<td>英文</td>
<td>中文</td>
<td>英文</td>
<td>中文</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Inertial</td>
<td>惯性的、惯量的、惰性的</td>
<td>Inherent characteristic</td>
<td>固有特性</td>
</tr>
<tr>
<td>Initial condition</td>
<td>初始条件</td>
<td>Initial state</td>
<td>初始状态</td>
</tr>
<tr>
<td>Initial value theorem</td>
<td>初始定理</td>
<td>Inner loop</td>
<td>内环</td>
</tr>
<tr>
<td>Input</td>
<td>输入</td>
<td>Input node</td>
<td>输入节点</td>
</tr>
<tr>
<td>Input signal</td>
<td>输入信号</td>
<td>Integral action</td>
<td>积分作用</td>
</tr>
<tr>
<td>Integral control</td>
<td>积分控制</td>
<td>IAE(integrated absolute error)</td>
<td>绝对误差积分</td>
</tr>
<tr>
<td>ISE(integrated square error)</td>
<td>平方误差积分</td>
<td>Internal description</td>
<td>内部描述</td>
</tr>
<tr>
<td>Intelligent instrument</td>
<td>智能仪表</td>
<td>Invariant</td>
<td>不变的、恒定的</td>
</tr>
<tr>
<td>Inverse matrix</td>
<td>逆矩阵</td>
<td>Inverse transformation</td>
<td>反变换</td>
</tr>
<tr>
<td>Inverse Laplace transforms</td>
<td>拉普拉斯反变换</td>
<td>Isocline method</td>
<td>等倾线法</td>
</tr>
<tr>
<td>Iterative algorithm</td>
<td>迭代算法</td>
<td>Jordan block</td>
<td>约旦块</td>
</tr>
<tr>
<td>Jordan canonical form</td>
<td>约旦标准型</td>
<td>Kalman criterion</td>
<td>卡尔曼准则</td>
</tr>
<tr>
<td>Kalman filter</td>
<td>卡尔曼滤波</td>
<td>Lag network</td>
<td>落后网络</td>
</tr>
<tr>
<td>Lag compensation</td>
<td>滞后补偿</td>
<td>Laplace transforms</td>
<td>拉普拉斯变换</td>
</tr>
<tr>
<td>Large scale system</td>
<td>大系统</td>
<td>Lead network</td>
<td>超前网络</td>
</tr>
<tr>
<td>Least-mean-square</td>
<td>最小均方</td>
<td>Limit cycle</td>
<td>极限环</td>
</tr>
<tr>
<td>Linearization</td>
<td>线性化</td>
<td>Linearity</td>
<td>线性度</td>
</tr>
<tr>
<td>Linear equation</td>
<td>线性方程</td>
<td>Linear system</td>
<td>线性系统</td>
</tr>
<tr>
<td>Linear programming</td>
<td>线性规划</td>
<td>Load</td>
<td>负载</td>
</tr>
<tr>
<td>Load-response curve</td>
<td>负荷响应曲线</td>
<td>Locus</td>
<td>轨迹</td>
</tr>
<tr>
<td>Logic diagram</td>
<td>逻辑图</td>
<td>Log magnitude</td>
<td>对数值</td>
</tr>
<tr>
<td>Low pass characteristic</td>
<td>低通特性</td>
<td>Magnitude condition</td>
<td>幅值条件</td>
</tr>
<tr>
<td>Magnitude-versus-phase plot</td>
<td>幅相特性曲线</td>
<td>Manipulated variable</td>
<td>操纵变量</td>
</tr>
<tr>
<td>Mason rule</td>
<td>梅逊公式</td>
<td>Mathematical model</td>
<td>数学模型</td>
</tr>
<tr>
<td>Matrix</td>
<td>矩阵</td>
<td>Maximum overshoot</td>
<td>最大超调量</td>
</tr>
<tr>
<td>Measurable</td>
<td>可测量的</td>
<td>Measured variable</td>
<td>被测变量</td>
</tr>
<tr>
<td>Minimum phase system</td>
<td>最小相位系统</td>
<td>Model decomposition</td>
<td>模型分解</td>
</tr>
<tr>
<td>Modulus</td>
<td>模</td>
<td>Moment of inertia</td>
<td>转动惯量</td>
</tr>
<tr>
<td>Multinomial</td>
<td>多项式（的）</td>
<td>Multivariable system</td>
<td>多变量系统</td>
</tr>
<tr>
<td>Natural frequency</td>
<td>自然频率</td>
<td>Negative feedback</td>
<td>负反馈</td>
</tr>
<tr>
<td>Nichols chart</td>
<td>尼柯尔斯图线</td>
<td>Node</td>
<td>节点</td>
</tr>
<tr>
<td>Noise</td>
<td>噪声</td>
<td>Nonlinear control system</td>
<td>非线性控制系统</td>
</tr>
<tr>
<td>Nonminimum phase system</td>
<td>非最小相位系统</td>
<td>Nonsingular</td>
<td>非奇异的</td>
</tr>
<tr>
<td>Norm</td>
<td>范数</td>
<td>Numerator</td>
<td>分子</td>
</tr>
<tr>
<td>Numerical control</td>
<td>数字控制、数控</td>
<td>Nyquist criterion</td>
<td>奈奎斯特判据</td>
</tr>
<tr>
<td>Nyquist contour</td>
<td>奈奎斯特轨线</td>
<td>Objective function</td>
<td>目标函数</td>
</tr>
<tr>
<td>Observability</td>
<td>可观测性、能观性</td>
<td>Observer</td>
<td>观测器</td>
</tr>
<tr>
<td>Odd symmetry</td>
<td>奇对称</td>
<td>Off line</td>
<td>离线</td>
</tr>
<tr>
<td>Offset</td>
<td>偏移、位移</td>
<td>On line</td>
<td>在线</td>
</tr>
<tr>
<td>Open loop</td>
<td>开环</td>
<td>Optimal control</td>
<td>最优控制</td>
</tr>
<tr>
<td>Optimization</td>
<td>最优化</td>
<td>Origin</td>
<td>原点</td>
</tr>
<tr>
<td>英文</td>
<td>中文</td>
<td>英文</td>
<td>中文</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Oscillating loop</td>
<td>振荡回路</td>
<td>Oscillation</td>
<td>振荡</td>
</tr>
<tr>
<td>Oscillatory response</td>
<td>振荡响应</td>
<td>Outer loop</td>
<td>外环</td>
</tr>
<tr>
<td>Output</td>
<td>输出</td>
<td>Output signal</td>
<td>输出信号</td>
</tr>
<tr>
<td>Over damping</td>
<td>过阻尼</td>
<td>Overshoot</td>
<td>超调量</td>
</tr>
<tr>
<td>Parameter</td>
<td>参数</td>
<td>Peak overshoot</td>
<td>超调峰值</td>
</tr>
<tr>
<td>Peak time</td>
<td>峰值时间</td>
<td>Performance index</td>
<td>性能指标</td>
</tr>
<tr>
<td>Perturbation</td>
<td>扰动、摄动</td>
<td>Phase lag</td>
<td>相位滞后</td>
</tr>
<tr>
<td>Phase lead</td>
<td>相位超前</td>
<td>Phase margin</td>
<td>相位裕量</td>
</tr>
<tr>
<td>Phase modifier</td>
<td>相位调节器</td>
<td>Phase plane</td>
<td>相平面</td>
</tr>
<tr>
<td>Pickoff point</td>
<td>引出点</td>
<td>PID(proportional plus integral plus derivative controller)</td>
<td>(比例、积分、微分)控制器</td>
</tr>
<tr>
<td>Piece-wise linearization</td>
<td>分段线性化</td>
<td>Pneumatic controller</td>
<td>气动调节器、气动控制器</td>
</tr>
<tr>
<td>Pole</td>
<td>极点</td>
<td>Pole assignment</td>
<td>极点配置</td>
</tr>
<tr>
<td>Polynomial</td>
<td>多项式</td>
<td>Position error</td>
<td>位置误差</td>
</tr>
<tr>
<td>Positive definiteness</td>
<td>正定性</td>
<td>Pre-compensator</td>
<td>预补偿器</td>
</tr>
<tr>
<td>Process control</td>
<td>过程控制</td>
<td>Proportional action</td>
<td>比例作用</td>
</tr>
<tr>
<td>Proportional band</td>
<td>比例带</td>
<td>Proportional control</td>
<td>比例控制</td>
</tr>
<tr>
<td>Prototype</td>
<td>原型、模型、样机</td>
<td>Pulse</td>
<td>脉冲</td>
</tr>
<tr>
<td>Pulse width</td>
<td>脉宽</td>
<td>Pure delay</td>
<td>纯滞后</td>
</tr>
<tr>
<td>Quadratic</td>
<td>二次的</td>
<td>Quadratic form</td>
<td>二次型</td>
</tr>
<tr>
<td>Quality control</td>
<td>质量控制</td>
<td>Quantizer</td>
<td>数字转换器</td>
</tr>
<tr>
<td>Ramp input</td>
<td>斜坡输入</td>
<td>Ramp response</td>
<td>斜坡响应</td>
</tr>
<tr>
<td>Rate feedback</td>
<td>速度反馈</td>
<td>Rate time</td>
<td>微分时间、预调时间</td>
</tr>
<tr>
<td>Rational</td>
<td>有理（数）的、合理的</td>
<td>Rational number</td>
<td>有理数</td>
</tr>
<tr>
<td>Realization</td>
<td>实现</td>
<td>Reference variable</td>
<td>参考变量</td>
</tr>
<tr>
<td>Regulator</td>
<td>调节器</td>
<td>Relay</td>
<td>继电器</td>
</tr>
<tr>
<td>Relative stability</td>
<td>相对稳定性</td>
<td>Reliability</td>
<td>可靠性</td>
</tr>
<tr>
<td>Remote control</td>
<td>遥控</td>
<td>Reproducibility</td>
<td>再现性</td>
</tr>
<tr>
<td>Resilience</td>
<td>弹性、弹性形变</td>
<td>Resonance</td>
<td>谐振</td>
</tr>
<tr>
<td>Response</td>
<td>响应</td>
<td>Reset time</td>
<td>再调时间、积分时间</td>
</tr>
<tr>
<td>Residue</td>
<td>留数</td>
<td>Rise time</td>
<td>上升时间</td>
</tr>
<tr>
<td>RMS(root mean square)</td>
<td>均方根</td>
<td>Roots loci</td>
<td>根轨迹</td>
</tr>
<tr>
<td>Routh array</td>
<td>劳斯阵列</td>
<td>Routh-Hurwitz criterion</td>
<td>劳斯-赫尔维茨判据</td>
</tr>
<tr>
<td>Routh stability criterion</td>
<td>劳斯稳定判据</td>
<td>Sampling control</td>
<td>采样控制</td>
</tr>
<tr>
<td>Sampling frequency</td>
<td>采样频率</td>
<td>Sampling period</td>
<td>采样周期</td>
</tr>
<tr>
<td>Saturation</td>
<td>饱和</td>
<td>Scalar function</td>
<td>标量函数</td>
</tr>
<tr>
<td>Scaling factor</td>
<td>比例因子</td>
<td>Sensitivity</td>
<td>灵敏度</td>
</tr>
<tr>
<td>Sensor</td>
<td>传感器</td>
<td>Series compensation</td>
<td>串联补偿</td>
</tr>
<tr>
<td>Servo</td>
<td>伺服机构、伺服电机</td>
<td>Servodrive</td>
<td>伺服传动、伺服传动装置</td>
</tr>
<tr>
<td>Set point</td>
<td>设定点</td>
<td>Set value</td>
<td>设定值</td>
</tr>
<tr>
<td>Settling time</td>
<td>调节时间；稳定时间</td>
<td>Signal flow graph</td>
<td>信号流图</td>
</tr>
<tr>
<td>英文</td>
<td>中文</td>
<td>英文</td>
<td>中文</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Singularity</td>
<td>奇点</td>
<td>Sinusoidal</td>
<td>正弦的</td>
</tr>
<tr>
<td>Slope</td>
<td>斜率</td>
<td>Stability</td>
<td>稳定（性）</td>
</tr>
<tr>
<td>Stability margin</td>
<td>稳定裕量</td>
<td>State equations</td>
<td>状态方程</td>
</tr>
<tr>
<td>State space</td>
<td>状态空间</td>
<td>State variables</td>
<td>状态变量</td>
</tr>
<tr>
<td>Stationary</td>
<td>稳态的</td>
<td>Steady-state</td>
<td>稳态</td>
</tr>
<tr>
<td>Steady-state deviation</td>
<td>稳态偏差</td>
<td>Steady-state error</td>
<td>稳态误差</td>
</tr>
<tr>
<td>Step singal</td>
<td>阶跃信号</td>
<td>Step response</td>
<td>阶跃响应</td>
</tr>
<tr>
<td>Stochastic process</td>
<td>随机过程</td>
<td>Summing junction</td>
<td>相加点</td>
</tr>
<tr>
<td>Superposition</td>
<td>叠加</td>
<td>Supervise</td>
<td>监控、检测、操纵</td>
</tr>
<tr>
<td>System</td>
<td>系统</td>
<td>Systematic deviation</td>
<td>系统偏置</td>
</tr>
<tr>
<td>System identification</td>
<td>系统辨识</td>
<td>Tangent</td>
<td>切线</td>
</tr>
<tr>
<td>Terminology</td>
<td>术语</td>
<td>Threshold value</td>
<td>阈值</td>
</tr>
<tr>
<td>Time constant</td>
<td>时间常数</td>
<td>Time domain</td>
<td>时域</td>
</tr>
<tr>
<td>Time response</td>
<td>时间响应</td>
<td>Time-invariant system</td>
<td>常定（时不变）系统</td>
</tr>
<tr>
<td>Time-varying system</td>
<td>时变系统</td>
<td>Trajectory</td>
<td>轨迹</td>
</tr>
<tr>
<td>Transducer</td>
<td>传感器、变换器</td>
<td>Transfer function</td>
<td>传递函数</td>
</tr>
<tr>
<td>Transfer matrix</td>
<td>转移矩阵</td>
<td>Transient response</td>
<td>转响应</td>
</tr>
<tr>
<td>Transmitter</td>
<td>变送器</td>
<td>Transportation lag</td>
<td>传输滞后</td>
</tr>
<tr>
<td>Transpose</td>
<td>转置（阵）</td>
<td>Undamped natural frequency</td>
<td>无阻尼自然频率</td>
</tr>
<tr>
<td>Underdamping</td>
<td>欠阻尼</td>
<td>Uniform stability</td>
<td>一致稳定</td>
</tr>
<tr>
<td>Unit circle</td>
<td>单位圆</td>
<td>Unit impulse</td>
<td>单位脉冲</td>
</tr>
<tr>
<td>Unit step function</td>
<td>单位阶跃函数</td>
<td>Unit feedback</td>
<td>单位反馈</td>
</tr>
<tr>
<td>Unit matrix</td>
<td>单位矩阵</td>
<td>Unstable</td>
<td>不稳定的</td>
</tr>
<tr>
<td>Unsymmetrical</td>
<td>不对称的</td>
<td>Value of quantity</td>
<td>量值</td>
</tr>
<tr>
<td>Variable</td>
<td>变量</td>
<td>Vector</td>
<td>向量</td>
</tr>
<tr>
<td>Velocity feedback</td>
<td>速度反馈</td>
<td>Viscous friction</td>
<td>黏摩擦</td>
</tr>
<tr>
<td>Wave</td>
<td>波</td>
<td>Waveform</td>
<td>波形</td>
</tr>
<tr>
<td>Weighting function</td>
<td>加权函数</td>
<td>White noise</td>
<td>白噪声</td>
</tr>
<tr>
<td>Zero</td>
<td>零点</td>
<td>Zero input response</td>
<td>零输入响应</td>
</tr>
<tr>
<td>Zero-order holder</td>
<td>零阶保持器</td>
<td>Zero-state response</td>
<td>零状态响应</td>
</tr>
<tr>
<td>Z-transfer function</td>
<td>Z传递函数</td>
<td>Z-transformation</td>
<td>z变换</td>
</tr>
</tbody>
</table>
D-1 模型建立函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数名称</th>
<th>功能描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>augstate</td>
<td>将状态增广到状态空间系统的输出中</td>
</tr>
<tr>
<td>2</td>
<td>append</td>
<td>两个状态空间系统的组合</td>
</tr>
<tr>
<td>3</td>
<td>parallel</td>
<td>系统的并联连接</td>
</tr>
<tr>
<td>4</td>
<td>series</td>
<td>系统的串联连接</td>
</tr>
<tr>
<td>5</td>
<td>feedback</td>
<td>两个系统的反馈连接</td>
</tr>
<tr>
<td>6</td>
<td>cloop</td>
<td>系统的单位反馈连接</td>
</tr>
<tr>
<td>7</td>
<td>ord2</td>
<td>产生二阶系统</td>
</tr>
<tr>
<td>8</td>
<td>rmodel,drmode</td>
<td>稳定的随机阶模型</td>
</tr>
<tr>
<td>9</td>
<td>ssdelete</td>
<td>从状态空间系统中删除输入、输出或状态</td>
</tr>
<tr>
<td>10</td>
<td>ssselect</td>
<td>从大状态空间系统中选择一个子系统</td>
</tr>
<tr>
<td>11</td>
<td>connect</td>
<td>将结构图转换为状态空间模型</td>
</tr>
<tr>
<td>12</td>
<td>estim,destim</td>
<td>生成连续/离散状态估计器或观察器</td>
</tr>
<tr>
<td>13</td>
<td>reg,dreg</td>
<td>生成控制器/估计器</td>
</tr>
<tr>
<td>14</td>
<td>pade</td>
<td>延时的 pade 近似</td>
</tr>
</tbody>
</table>

D-2 模型转换及参数获取函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数名称</th>
<th>功能描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>c2d, c2dt</td>
<td>将连续时间系统转换成离散时间系统</td>
</tr>
<tr>
<td>2</td>
<td>c2dm</td>
<td>将连续时间系统转换成离散时间系统</td>
</tr>
<tr>
<td>3</td>
<td>d2c</td>
<td>将离散时间系统转换成连续时间系统</td>
</tr>
<tr>
<td>4</td>
<td>d2cm</td>
<td>按指定方式将离散时间系统转换成连续时间系统</td>
</tr>
<tr>
<td>5</td>
<td>d2d</td>
<td>离散时间系统重新采样</td>
</tr>
<tr>
<td>6</td>
<td>ss</td>
<td>生成或转换为状态空间模型</td>
</tr>
<tr>
<td>7</td>
<td>tf</td>
<td>生成或转换为传递函数模型</td>
</tr>
<tr>
<td>8</td>
<td>zpk</td>
<td>生成或转换为零极点模型</td>
</tr>
<tr>
<td>9</td>
<td>ss2tf</td>
<td>将系统状态空间模型转换为传递函数模型</td>
</tr>
<tr>
<td>10</td>
<td>ss2zp</td>
<td>将系统状态空间模型转换为零极点模型</td>
</tr>
<tr>
<td>11</td>
<td>tf2ss</td>
<td>将系统传递函数模型转换为状态空间模型</td>
</tr>
<tr>
<td>12</td>
<td>tf2zp</td>
<td>将系统传递函数模型转换为零极点模型</td>
</tr>
<tr>
<td>13</td>
<td>zp2ss</td>
<td>将系统零极点模型转换为状态空间模型</td>
</tr>
<tr>
<td>14</td>
<td>zp2tf</td>
<td>将系统零极点模型转换为传递函数模型</td>
</tr>
</tbody>
</table>
D-3 模型特性函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数名称</th>
<th>功能描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ctrb, obsv</td>
<td>可控性和可观性矩阵</td>
</tr>
<tr>
<td>2</td>
<td>gram, dgram</td>
<td>求可控性和可观性 gram 矩阵</td>
</tr>
<tr>
<td>3</td>
<td>dcgain, ddcgain</td>
<td>计算系统的稳态（DC）增益</td>
</tr>
<tr>
<td>4</td>
<td>damp, ddamp</td>
<td>求衰减因子和自然频率</td>
</tr>
<tr>
<td>5</td>
<td>covar, dcovar</td>
<td>白噪声的协方差矩阵</td>
</tr>
<tr>
<td>6</td>
<td>esort, dsort</td>
<td>特征值排序</td>
</tr>
<tr>
<td>7</td>
<td>tzero</td>
<td>传输零点</td>
</tr>
<tr>
<td>8</td>
<td>printsys</td>
<td>显示或打印线性系统</td>
</tr>
</tbody>
</table>

D-4 时域响应函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数名称</th>
<th>功能描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>step</td>
<td>求连续系统的单位阶跃响应</td>
</tr>
<tr>
<td>2</td>
<td>dstep</td>
<td>求离散系统的单位阶跃响应</td>
</tr>
<tr>
<td>3</td>
<td>impulse</td>
<td>求连续系统的单位脉冲响应</td>
</tr>
<tr>
<td>4</td>
<td>dimpulse</td>
<td>求离散系统的单位脉冲响应</td>
</tr>
<tr>
<td>5</td>
<td>initial</td>
<td>求连续系统的零输入响应</td>
</tr>
<tr>
<td>6</td>
<td>dinital</td>
<td>求离散系统的零输入响应</td>
</tr>
<tr>
<td>7</td>
<td>lsim</td>
<td>求连续系统的零输入响应</td>
</tr>
<tr>
<td>8</td>
<td>dlslim</td>
<td>求连续系统的零输入响应</td>
</tr>
<tr>
<td>9</td>
<td>ltitr</td>
<td>求线性时不变系统的时间响应</td>
</tr>
</tbody>
</table>

D-5 频域响应函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数名称</th>
<th>功能描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>allmargin</td>
<td>计算系统稳定裕量的全部信息</td>
</tr>
<tr>
<td>2</td>
<td>bode</td>
<td>求连续系统的 Bode 频率响应</td>
</tr>
<tr>
<td>3</td>
<td>dbode</td>
<td>求离散系统的 Bode 频率响应</td>
</tr>
<tr>
<td>4</td>
<td>bodemag</td>
<td>绘制连续系统 Bode 图的幅频响应曲线</td>
</tr>
<tr>
<td>5</td>
<td>nyquist</td>
<td>求连续系统的 Nyquist 频率曲线</td>
</tr>
<tr>
<td>6</td>
<td>dryquist</td>
<td>求离散系统的 Nyquist 频率曲线</td>
</tr>
</tbody>
</table>
自动控制原理

续表

<table>
<thead>
<tr>
<th>序号</th>
<th>函数名称</th>
<th>功能描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>nichols</td>
<td>求连续系统的Nichols频率响应曲线</td>
</tr>
<tr>
<td>8</td>
<td>dNichols</td>
<td>求离散系统的Nichols频率响应曲线</td>
</tr>
<tr>
<td>9</td>
<td>ngrid</td>
<td>绘制Nichols曲线网络</td>
</tr>
<tr>
<td>10</td>
<td>sigma</td>
<td>求连续状态空间系统的奇异值Bode图</td>
</tr>
<tr>
<td>11</td>
<td>dSigma</td>
<td>求离散状态空间系统的奇异值Bode图</td>
</tr>
<tr>
<td>12</td>
<td>freqs</td>
<td>模拟滤波器的频率响应</td>
</tr>
<tr>
<td>13</td>
<td>freqz</td>
<td>数字滤波器的频率响应</td>
</tr>
<tr>
<td>14</td>
<td>margin</td>
<td>求增益和相位裕量</td>
</tr>
<tr>
<td>15</td>
<td>lifter</td>
<td>求线性时不变响应</td>
</tr>
</tbody>
</table>

D-6 根轨迹函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数名称</th>
<th>功能描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pzmap</td>
<td>绘制系统的零极点图</td>
</tr>
<tr>
<td>2</td>
<td>rlocus</td>
<td>求系统根轨迹</td>
</tr>
<tr>
<td>3</td>
<td>rlocfind</td>
<td>计算给定根的根轨迹增益</td>
</tr>
<tr>
<td>4</td>
<td>sgrid</td>
<td>在连续系统根轨迹和零极点图中，绘制阻尼系数和自然频率栅格</td>
</tr>
<tr>
<td>5</td>
<td>zgrid</td>
<td>在离散系统根轨迹和零极点图中，绘制阻尼系数和自然频率栅格</td>
</tr>
</tbody>
</table>

D-7 估计器/调节器设计函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数名称</th>
<th>功能描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lqe, lqe2, lqew</td>
<td>连续系统线性二次型估计器设计</td>
</tr>
<tr>
<td>2</td>
<td>dlqe, dlqew</td>
<td>离散系统线性二次型估计器设计</td>
</tr>
<tr>
<td>3</td>
<td>lqed</td>
<td>根据连续性能指标函数进行离散估计器设计</td>
</tr>
<tr>
<td>4</td>
<td>lqr, lqr2, lqry</td>
<td>连续系统的线性二次型调节器设计</td>
</tr>
<tr>
<td>5</td>
<td>dlqr, dlqry</td>
<td>离散系统的线性二次型调节器设计</td>
</tr>
<tr>
<td>6</td>
<td>lqrd</td>
<td>根据连续性能指标函数进行离散调节器设计</td>
</tr>
<tr>
<td>7</td>
<td>place, acker</td>
<td>极点配置增益选择</td>
</tr>
</tbody>
</table>

D-8 图像处理工具箱函数

D-8-1 通用函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数名称</th>
<th>功能描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>colorbar</td>
<td>显示颜色条</td>
</tr>
<tr>
<td>2</td>
<td>getimage</td>
<td>从坐标轴取得图像数据</td>
</tr>
<tr>
<td>3</td>
<td>image</td>
<td>创建并显示图像对象</td>
</tr>
<tr>
<td>4</td>
<td>imagesc</td>
<td>按图像显示数据矩阵</td>
</tr>
<tr>
<td>5</td>
<td>imshow</td>
<td>显示图像</td>
</tr>
</tbody>
</table>
附录 D 控制系统 MATLAB 常用函数

D-8-2 图像文件 I/O 函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数</th>
<th>功能描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>imview</td>
<td>利用图像浏览器显示图像</td>
</tr>
<tr>
<td>7</td>
<td>montage</td>
<td>在矩形框中同时显示多帧图像</td>
</tr>
<tr>
<td>8</td>
<td>immovie</td>
<td>创建多帧索引引图的电影动画</td>
</tr>
<tr>
<td>9</td>
<td>subimage</td>
<td>在一个图形中显示多个图像，结合函数 subplot 使用</td>
</tr>
<tr>
<td>10</td>
<td>true2image</td>
<td>调整图像显示尺寸</td>
</tr>
<tr>
<td>11</td>
<td>wrap</td>
<td>将图像显示到纹理映射表面</td>
</tr>
<tr>
<td>12</td>
<td>zoom</td>
<td>缩放图像或图形</td>
</tr>
</tbody>
</table>

D-8-3 空间变换函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数</th>
<th>功能描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>findbounds</td>
<td>为空间变换寻找输出边界</td>
</tr>
<tr>
<td>2</td>
<td>fliptform</td>
<td>切换空间变换结构的输入和输出角色</td>
</tr>
<tr>
<td>3</td>
<td>imcrop</td>
<td>剪切图像</td>
</tr>
<tr>
<td>4</td>
<td>imresize</td>
<td>图像缩放</td>
</tr>
<tr>
<td>5</td>
<td>imrotate</td>
<td>图像旋转</td>
</tr>
<tr>
<td>6</td>
<td>interp2</td>
<td>2-D 数据插值</td>
</tr>
<tr>
<td>7</td>
<td>imtransform</td>
<td>对图像进行 2-D 空间变换</td>
</tr>
<tr>
<td>8</td>
<td>makeresampler</td>
<td>生成重采样结构</td>
</tr>
<tr>
<td>9</td>
<td>maketform</td>
<td>生成几何变换结构</td>
</tr>
<tr>
<td>10</td>
<td>tformarray</td>
<td>多维数组的空间变换</td>
</tr>
<tr>
<td>11</td>
<td>tformfwd</td>
<td>正向空间变换</td>
</tr>
<tr>
<td>12</td>
<td>tforminv</td>
<td>逆向空间变换</td>
</tr>
</tbody>
</table>

D-8-4 像素和统计处理函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数</th>
<th>功能描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>corr2</td>
<td>计算两个矩阵的 2-D 相关系数</td>
</tr>
<tr>
<td>2</td>
<td>imcontour</td>
<td>创建图像的轮廓图</td>
</tr>
<tr>
<td>3</td>
<td>imhist</td>
<td>显示图像的直方图</td>
</tr>
<tr>
<td>4</td>
<td>impixel</td>
<td>确定像素颜色值</td>
</tr>
<tr>
<td>5</td>
<td>improfile</td>
<td>沿线段计算剖面图的像素值</td>
</tr>
<tr>
<td>6</td>
<td>mean2</td>
<td>求矩阵元素平均值</td>
</tr>
<tr>
<td>7</td>
<td>pixval</td>
<td>显示图像像素信息</td>
</tr>
<tr>
<td>8</td>
<td>regionprops</td>
<td>得到图像区域属性</td>
</tr>
<tr>
<td>9</td>
<td>std2</td>
<td>计算矩阵元素的标准偏移</td>
</tr>
</tbody>
</table>
D-8-5 图像分析函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>edge</td>
<td>识别灰度图像中的边界</td>
</tr>
<tr>
<td>2</td>
<td>qtdecomp</td>
<td>执行四叉树分解</td>
</tr>
<tr>
<td>3</td>
<td>qtgetblk</td>
<td>获取四叉树分解中的数组块值</td>
</tr>
<tr>
<td>4</td>
<td>qtsetblk</td>
<td>设置四叉树分解中的数组块值</td>
</tr>
</tbody>
</table>

D-8-6 图像增强函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>adapthisteq</td>
<td>执行对比度受限的直方图均衡</td>
</tr>
<tr>
<td>2</td>
<td>decorrstretch</td>
<td>对多通道图像应用解卷积延拓</td>
</tr>
<tr>
<td>3</td>
<td>histeq</td>
<td>用直方图均等化增强对比度</td>
</tr>
<tr>
<td>4</td>
<td>imadjust</td>
<td>调整图像灰度值或颜色映射表</td>
</tr>
<tr>
<td>5</td>
<td>innoise</td>
<td>向图像中加入噪声</td>
</tr>
<tr>
<td>6</td>
<td>medfilt2</td>
<td>进行二维中值滤波</td>
</tr>
<tr>
<td>7</td>
<td>ordfilt2</td>
<td>进行二维统计顺序滤波</td>
</tr>
<tr>
<td>8</td>
<td>stretchlim</td>
<td>得到图像对比度延拓的灰度上下限</td>
</tr>
<tr>
<td>9</td>
<td>wiener2</td>
<td>进行二维适应性去噪滤波</td>
</tr>
</tbody>
</table>

D-8-7 线性滤波函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>conv2</td>
<td>二维卷积</td>
</tr>
<tr>
<td>2</td>
<td>convmtx2</td>
<td>二维矩阵卷积</td>
</tr>
<tr>
<td>3</td>
<td>convn</td>
<td>n 维卷积</td>
</tr>
<tr>
<td>4</td>
<td>filter2</td>
<td>二维线性滤波</td>
</tr>
<tr>
<td>5</td>
<td>fspecial</td>
<td>创建预定义滤波器</td>
</tr>
<tr>
<td>6</td>
<td>imfilter</td>
<td>多维图像滤波</td>
</tr>
</tbody>
</table>

D-8-8 线性二维滤波器设计函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>freqspace</td>
<td>确定二维频率响应的频率空间</td>
</tr>
<tr>
<td>2</td>
<td>freqz2</td>
<td>计算二维频率响应</td>
</tr>
<tr>
<td>3</td>
<td>fsamp2</td>
<td>用频率采样法设计二维 FIR 滤波器</td>
</tr>
<tr>
<td>4</td>
<td>ftrans2</td>
<td>通过频率转换法设计二维 FIR 滤波器</td>
</tr>
<tr>
<td>5</td>
<td>fwind1</td>
<td>用一维窗口方法设计二维 FIR 滤波器</td>
</tr>
<tr>
<td>6</td>
<td>fwind2</td>
<td>用二维窗口方法设计二维 FIR 滤波器</td>
</tr>
</tbody>
</table>
D-8-9 线性二维滤波器设计函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>dct2</td>
<td>进行二维离散余弦变换</td>
</tr>
<tr>
<td>2</td>
<td>dctmtx</td>
<td>计算离散余弦变换矩阵</td>
</tr>
<tr>
<td>3</td>
<td>ift2</td>
<td>进行二维快速傅里叶变换</td>
</tr>
<tr>
<td>4</td>
<td>fftn</td>
<td>进行 n 维快速傅里叶变换</td>
</tr>
<tr>
<td>5</td>
<td>ifft2</td>
<td>转换快速傅里叶变换的输出象限</td>
</tr>
<tr>
<td>6</td>
<td>idct2</td>
<td>计算二维离散余弦变换</td>
</tr>
<tr>
<td>7</td>
<td>ifftn</td>
<td>计算 n 维快速傅里叶变换</td>
</tr>
<tr>
<td>8</td>
<td>iradon</td>
<td>逆 Radon 变换</td>
</tr>
<tr>
<td>9</td>
<td>phantom</td>
<td>产生一个头部幻影图像</td>
</tr>
<tr>
<td>10</td>
<td>radon</td>
<td>计算 Radon 变换</td>
</tr>
<tr>
<td>11</td>
<td>fanbeam</td>
<td>计算扇形投影变换</td>
</tr>
</tbody>
</table>

D-8-10 边沿和块处理函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bestblk</td>
<td>确定进行块操作的块大小</td>
</tr>
<tr>
<td>2</td>
<td>blkproc</td>
<td>实现图像的非重叠（distinct）块操作</td>
</tr>
<tr>
<td>3</td>
<td>col2im</td>
<td>将矩阵的列重新组织到块中</td>
</tr>
<tr>
<td>4</td>
<td>colfilt</td>
<td>利用列相关函数进行边缘操作</td>
</tr>
<tr>
<td>5</td>
<td>im2col</td>
<td>重新组织图像块为列</td>
</tr>
<tr>
<td>6</td>
<td>nlfilter</td>
<td>通用滑动邻域操作</td>
</tr>
</tbody>
</table>

D-8-11 图像形态学操作函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>applylut</td>
<td>在二值图像中利用查找表进行邻域操作</td>
</tr>
<tr>
<td>2</td>
<td>bwarea</td>
<td>计算二值图像的对象面积</td>
</tr>
<tr>
<td>3</td>
<td>bweuler</td>
<td>计算二值图像的欧拉数</td>
</tr>
<tr>
<td>4</td>
<td>bwhitmiss</td>
<td>执行二值图像的击中和击不中操作</td>
</tr>
<tr>
<td>5</td>
<td>bwlable</td>
<td>标注二值图像中已连接的部分</td>
</tr>
<tr>
<td>6</td>
<td>bwmorph</td>
<td>二值图像的通用形态学操作</td>
</tr>
<tr>
<td>7</td>
<td>bwperim</td>
<td>计算二值图像中对象的周长</td>
</tr>
<tr>
<td>8</td>
<td>bwselect</td>
<td>在二值图像中选择对象</td>
</tr>
<tr>
<td>9</td>
<td>makecut</td>
<td>创建用于 applylut 函数的查找表</td>
</tr>
<tr>
<td>10</td>
<td>bwdist</td>
<td>距离变换</td>
</tr>
<tr>
<td>11</td>
<td>imbothat</td>
<td>执行形态学的闭包运算</td>
</tr>
<tr>
<td>12</td>
<td>iclose</td>
<td>图像的闭运算</td>
</tr>
<tr>
<td>13</td>
<td>imopen</td>
<td>图像的开运算</td>
</tr>
<tr>
<td>14</td>
<td>imdilate</td>
<td>图像的膨胀</td>
</tr>
<tr>
<td>15</td>
<td>imerode</td>
<td>图像的腐蚀</td>
</tr>
<tr>
<td>16</td>
<td>imfill</td>
<td>填充图像区域</td>
</tr>
<tr>
<td>17</td>
<td>imtophat</td>
<td>用开运算后的图像减去原图像</td>
</tr>
<tr>
<td>18</td>
<td>strel</td>
<td>创建形态学结构元素</td>
</tr>
</tbody>
</table>
D-8-12 区域处理函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>roicolor</td>
<td>选择感兴趣的顔色区</td>
</tr>
<tr>
<td>2</td>
<td>roifill</td>
<td>在图像的任意区域中进行平滑插补</td>
</tr>
<tr>
<td>3</td>
<td>roifilt2</td>
<td>滤波特定区域</td>
</tr>
<tr>
<td>4</td>
<td>roipoly</td>
<td>选择一个感兴趣的多边形区域</td>
</tr>
</tbody>
</table>

D-8-13 图像代数操作

<table>
<thead>
<tr>
<th>序号</th>
<th>函数</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>imadd</td>
<td>加运算</td>
</tr>
<tr>
<td>2</td>
<td>imsubtract</td>
<td>减运算</td>
</tr>
<tr>
<td>3</td>
<td>immultiply</td>
<td>乘运算</td>
</tr>
<tr>
<td>4</td>
<td>imdivide</td>
<td>除运算</td>
</tr>
</tbody>
</table>

D-8-14 颜色空间转换函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>hsv2rgb</td>
<td>转换 HSV 的值为 RGB 颜色空间</td>
</tr>
<tr>
<td>2</td>
<td>ntsc2rgb</td>
<td>转换 NTSC 的值为 RGB 颜色空间</td>
</tr>
<tr>
<td>3</td>
<td>rgb2hsv</td>
<td>转换 RGB 的值为 HSV 颜色空间</td>
</tr>
<tr>
<td>4</td>
<td>rgb2ntsc</td>
<td>转换 RGB 的值为 NTSC 颜色空间</td>
</tr>
<tr>
<td>5</td>
<td>rgb2ycbcr</td>
<td>转换 RGB 的值为 YCbCr 颜色空间</td>
</tr>
<tr>
<td>6</td>
<td>ycbcr2rgb</td>
<td>转换 YCbCr 的值为 RGB 颜色空间</td>
</tr>
</tbody>
</table>

D-8-15 图像类型和类型转换函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>dither</td>
<td>通过抖动增加外观颜色分辨率，转换图像</td>
</tr>
<tr>
<td>2</td>
<td>gray2ind</td>
<td>转换灰度图像为索引色图像</td>
</tr>
<tr>
<td>3</td>
<td>grayslice</td>
<td>从灰度图像为索引色图像</td>
</tr>
<tr>
<td>4</td>
<td>im2bw</td>
<td>转换图像为二值图像</td>
</tr>
<tr>
<td>5</td>
<td>im2double</td>
<td>转换图像矩阵为双精度类型</td>
</tr>
<tr>
<td>6</td>
<td>double</td>
<td>转换数据为双精度类型</td>
</tr>
<tr>
<td>7</td>
<td>uint8</td>
<td>转换数据为 8 位无符号整型</td>
</tr>
<tr>
<td>8</td>
<td>im2uint8</td>
<td>转换图像阵列位为 8 位无符号整型</td>
</tr>
<tr>
<td>9</td>
<td>im2uint16</td>
<td>转换图像阵列为 16 位无符号整型</td>
</tr>
<tr>
<td>10</td>
<td>uint16</td>
<td>转换数据为 16 位无符号整型</td>
</tr>
<tr>
<td>11</td>
<td>ind2gray</td>
<td>转换索引色图像为灰度图像</td>
</tr>
<tr>
<td>12</td>
<td>ind2rgb</td>
<td>转换索引色图像为 RGB 图像</td>
</tr>
<tr>
<td>13</td>
<td>isbw</td>
<td>判断是否为二值图像</td>
</tr>
<tr>
<td>14</td>
<td>isgray</td>
<td>判断是否为灰度图像</td>
</tr>
<tr>
<td>15</td>
<td>isind</td>
<td>判断是否为索引色图像</td>
</tr>
<tr>
<td>16</td>
<td>isrgb</td>
<td>判断是否为 RGB 图像</td>
</tr>
<tr>
<td>17</td>
<td>mat2gray</td>
<td>转换矩阵为灰度图像</td>
</tr>
<tr>
<td>18</td>
<td>rgb2gray</td>
<td>转换 RGB 图像或颜色映射表为灰度图像</td>
</tr>
<tr>
<td>19</td>
<td>rgb2ind</td>
<td>转换 RGB 图像为索引色图像</td>
</tr>
</tbody>
</table>
D-8-16 图像复原函数

<table>
<thead>
<tr>
<th>序号</th>
<th>函数</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>deconvwnr</td>
<td>用维纳滤波复原图像</td>
</tr>
<tr>
<td>2</td>
<td>deconvreg</td>
<td>用最小约束二乘滤波复原图像</td>
</tr>
<tr>
<td>3</td>
<td>deconvlucy</td>
<td>用 Richardson-Lucy 滤波复原图像</td>
</tr>
<tr>
<td>4</td>
<td>deconvblind</td>
<td>用盲卷积滤波复原图像</td>
</tr>
</tbody>
</table>
参考文献