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PREFACE 
a E 

In 1972, I taught an informal course on numerical solution of heat transfer 

and fluid flow to a small group of research workers at Imperial College, 

London. Later, the material was expanded and formalized for presentation in 

graduate courses at the University of Waterloo in Canada (in 1974), at the 

Norwegian Institute of Technology, Trondheim (in 1977), and at the Uni- 

versity of Minnesota (in 1975, 1977, and 1979). During the last two years, I 

have also presented the same material in a short-course format at ASME 

national meetings. The enthusiastic response accorded to these courses has 

encouraged me to write this book, which can be used as a text for a graduate 

course as well as a reference book for computational work in heat transfer 

and fluid flow. 

Although there is an extensive literature on computational thermofluid 

analysis, the newcomer to the field has insufficient help available. The 

graduate student, the researcher, and the practicing engineer must struggle 

through journal articles or be content with elementary presentation in books 

on numerical analysis. Often, it is the subtle details that determine the success 

or failure of a computational activity; yet, the practices that are learned 

through experience by successful computing groups rarely appear in print. A 

consequence is that many workers either give up the computational approach 

after many months of frustrating pursuit or struggle through to the end with 

inefficient computer programs. 

Being aware of this situation, I have tried to present in this book a 

self-contained, simple, and practical treatment of the subject. The book is 

introductory in style and is intended for the potential practitioner of 

numerical heat transfer and fluid flow; it is not designed for the experts jn the 

subject area. In developing the numerical techniques, I emphasize physical 

significance rather than mathematical manipulation. Indeed, most of the 
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mathematics used here is limited to simple algebra. The result is that, whereas 

the book enables the reader to travel all the way to the present-day frontier 

of the subject, the journey takes place through delightfully simple and 

illuminating physical concepts and considerations. In teaching the material 

with such an approach, I have often been pleasantly surprised by the fact that 

the students not only learn about numerical methods but also develop a better 

appreciation of the relevant physical processes. 

As a user of numerical techniques, I have come to prefer a certain family 

of methods and a certain set of practices. This repertoire has been collected 

partly from the literature and subsequently has been enriched, adapted, and 

modified. Thus, since a considerable amount of sorting and sifting of available 

methods has already taken place (albeit with my own bias), I have limited the 

scope of this book to the set of methods that I wish to recommend. I do not 

attempt to present a comparative study of all available methods; other 

methods are only occasionally mentioned when they serve to illuminate a 

specific feature under consideration. In this sense, this book represents my 

personal view of the subject. Although I am, of course, enthusiastic about this 

viewpoint, I recognize that my choices have been influenced by my back- 

ground, personal preferences, and technical objectives. Others operating in 

different environments may well come to prefer alternative approaches. 

To illustrate the application of the material, problems are given at the end 

of some chapters. Most of the problems can be solved by using a pocket 

calculator, although some of them should be programmed for a digital 

computer. The problems are not meant for testing the student reader, but are 

included primarily for extending and enriching the learning process. They 

suggest alternative techniques and present additional material. At times, in my 

attempt to give a hint for the problem solution, I almost disclose the full 

answer. In such cases, arriving at the correct answer is not the main objective; 

the reader should focus on the message that the problem is designed to 

convey. 
This book carries the description of the numerical method to a point 

where the reader could begin to write a computer program. Indeed, the reader 

should be able to construct computer programs that generate the kind of 

results presented in the final chapter of the book. A range of computer 

programs of varying generality can be designed depending upon the nature of 

the problems to be solved. Many readers might have found it helpful if a 

representative computer program were included in this book. I did consider 

the possibility. However, the task of providing a reasonably general computer 

program, its detailed description, and several examples of its use seemed so 

formidable that it would have considerably delayed the publication of this 

book. For the time being, I have included a section on the preparation and 

testing of a computer program (Section 7.4), where many useful procedures 

and practices gathered through experience are described. 

The completion of this book fulfills a desire and a dream that I have held 
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for a number of years. It was in 1971 that Professor D. Brian Spalding and I 

planned a book of this kind and wrote a preliminary outline for it. Further 

progress, however, became difficult because of the geographical distance 

between us and because of our involvement in a variety of demanding 

activities. Finally, a joint book seemed impracticable, and I proceeded to 

convert my lecture notes into this textbook. The present book has some 

resemblance to the joint book that we had planned, since I have made liberal 

use of Spalding’s lectures and writings. His direct involvement, however, would 

have made this book much better. 
In this undertaking, I owe the greatest debt to Professor Spalding. He 

introduced me to the fascinating world of computational methods. The work 

that we accomplished together represents the most delightful and creative 

experience of my professional life. The influence of his ideas on my thinking 

can be seen throughout this book. The concepts of “one-way” and “two-way” 

coordinates (and the terms themselves) are the product of his imagination. It 

was he who organized all the relevant physical processes through a general 

differential equation of a standard form. Above all, our rapid progress in 

computational work has resulted from Spalding’s vision and conviction that 

one day all practical situations will become amenable to computer analysis. 

I wish to record my sincere thanks to Professor D. Brian Spalding for his 

creative influence on my professional activities, for continued warm friend- 

ship, and for his direct and indirect contributions to this book. 

Professor Ephraim M. Sparrow has been my most enthusiastic supporter 

in the activity of writing this book. His interest began even earlier when he 
attended my graduate course on the subject. I have greatly benefited from his 

questions and subsequent discussions. He spent countless hours in reading the 

manuscript of this book and in suggesting changes and improvements. It is due 

to his critical review that I have been able to achieve some measure of clarity 

and completeness in this book. I am very grateful to him for his active 

interest in this work and for his personal interest in me. 
A number of other colleagues and friends have also provided constant 

inspiration through their special interest in my work. In particular, I wish to 

thank Professor Richard J. Goldstein for his support and encouragement and 

Professor George D. Raithby for many stimulating discussions. My thanks are 

also due to the many students in my graduate courses, who have contributed 

significantly to this book through their questions and discussions and through 

their enthusiasm and response. I am grateful to Mrs. Lucille R. Laing, who 

typed the manuscript so carefully and cheerfully. I would like to thank Mr. 

William Begell, President of Hemisphere Publishing Corporation, for his 
personal interest in publishing this book and the staff at Hemisphere for their 

competent handling of this project. 

My family has been very understanding and supportive during my writing 

activity; now that the writing is over, I plan to spend more time with my wife 

and children. 
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CHAPTER 

ONE 
A A 

INTRODUCTION 

1.1 SCOPE OF THE BOOK 

Importance of heat transfer and fluid flow. This book is concerned with heat 

and mass transfer, fluid flow, chemical reaction, and other related processes 

that occur in engineering equipment, in the natural environment, and in living 

organisms. That these processes play a vital role can be observed in a great 

variety of practical situations. Nearly all methods of power production involve 

fluid flow and heat transfer as essential processes. The same processes govern 

the heating and air conditioning of buildings. Major segments of the chemical 

and metallurgical industries use components such as furnaces, heat exchangers, 

condensers, and reactors, where thermofluid processes are at work. Aircraft 

and rockets owe their functioning to fluid flow, heat transfer, and chemical 

reaction. In the design of electrical machinery and electronic circuits, heat 

transfer is often the limiting factor. The pollution of the natural environment 

is largely caused by heat and mass transfer, and so are storms, floods, and 

fires. In the face of changing weather conditions, the human body resorts to 

heat and mass transfer for its temperature control. The processes of heat 

transfer and fluid flow seem to pervade all aspects of our life. 

Need for understanding and prediction. Since the processes under con- 

sideration have such an overwhelming impact on human life, we should be 

able to deal with them effectively. This ability can result from an understanding 

of the nature of the processes and from methodology with which to predict 

them quantitatively. Armed with this expertise, the designer of an engineering 

device can ensure the desired performance—the designer is able to choose the 
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2 NUMERICAL HEAT TRANSFER AND FLUID FLOW 

optimum design from among a number of alternative possibilities. The power 

of prediction enables us to operate existing equipment more safely and 

efficiently. Predictions of the relevant processes help us in forecasting, and 

even controlling, potential dangers such as floods, tides, and fires. In all these 

cases, predictions offer economic benefits and contribute to human well-being. 

Nature of prediction. The prediction of behavior in a given physical 

situation consists of the values of the relevant variables governing the 

processes of interest. Let us consider a particular example. In a combustion 

chamber of a certain description, a complete prediction should give us the 

values of velocity, pressure, temperature, concentrations of the relevant 

chemical species, etc., throughout the domain of interest; it should also 

provide the shear stresses, heat fluxes, and mass flow rates at the confining 

walls of the combustion chamber. The prediction should state how any of 

these quantities would change in response to proposed changes in geometry, 

flow rates, fluid properties, etc. 

Purpose of the book. This book is primarily aimed at developing a general 

method of prediction for heat and mass transfer, fluid flow, and related 

processes, As we shall shortly see, among the different methods of prediction, 

the numerical solution offers great promise. In this book, we shall construct a 

numerical method for predicting the processes of interest. 

As far as possible, our aim will be to design a numerical method having 

complete generality. We shall, therefore, refrain from accepting any final 

restrictions such as two-dimensionality, boundary-layer approximations, and 

constant-density flow. If any restrictions are temporarily adopted, it will be 

for ease of presentation and understanding and not because of any intrinsic 

limitation. We shall begin the subject at a very elementary level and, from 

there, travel nearly to the frontier of the subject. 

This ambitious task cannot, of course, be accomplished in a modest-sized 

book without leaving out a number of important topics. Therefore, the 

mathematical formulation of the equations that govern the processes of 

interest will be discussed only briefly in this book. For the complete 

derivation of the required equations, the reader must turn to standard 

textbooks on the subject. The mathematical models for complex processes like 

turbulence, combustion, and radiation will be assumed to be known or 

available to the reader. Even in the subject of numerical solution, we shall not 

survey all available methods and discuss their merits and demerits. Rather, we 

shall focus attention on a particular family of methods that the author has 

used, developed, or contributed to. Reference to other methods will be made 

only when this serves to highlight a certain issue. While a general formulation 

will be attempted, no special attention will be given to supersonic flows, 

free-surface flows, or two-phase flows. 

An important characteristic of the numerical methods to be developed in 

this book is that they are strongly based on physical considerations, not just 

on mathematical manipulations. Indeed, nothing more sophisticated than 

INTRODUCTION 3 

simple algebra and elementary calculus is used. A significant advantage of this 

strategy is that the reader, while learning about the numerical methods, 

develops a deeper understanding of, and insight into, the underlying physical 

processes. This appreciation for physical significance is very helpful in 

analyzing and interpreting computed results. But, even if the reader never 

performs numerical computations, this study of the numerical methods will 

provide—it is interesting to note—a greater feel for the physical aspects of heat 

transfer and fluid flow. Further, the physical approach will equip the reader 

with general criteria with which to judge other existing and future numerical 

methods. 

1.2 METHODS OF PREDICTION 

Prediction of heat transfer and fluid-flow processes can be obtained by two 

main methods: experimental investigation and theoretical calculation. We shall 

briefly consider each and then compare the two. 

1.2-1 Experimental Investigation 

The most reliable information about a physical process is often given by 

actual measurement. An experimental investigation involving full-scale equip- 

ment can be used to predict how identical copies of the equipment would 

perform under the same conditions. Such full-scale tests are, in most cases, 

prohibitively expensive and often impossible. The alternative then is to 

perform experiments on small-scale models. The resulting information, how- 

ever, must be extrapolated to full scale, and general rules for doing this are 

often unavailable. Further, the small-scale models do not always simulate all 

the features of the full-scale equipment; frequently, important features such as 

combustion or boiling are omitted from the model'tests. This further reduces 

the usefulness of the test results. Finally, it must be remembered that there are 

serious difficulties of measurement in many situations, and that the measuring 

instruments are not free from errors. 

1.2-2 Theoretical Calculation 

A theoretical prediction works out the consequences of a mathematical model, 

rather than those of an actual physical model. For the physical processes of 

interest here, the mathematical model mainly consists of a set of differential 

equations. If the methods of classical mathematics were to be used for solving 

these equations, there would be little hope of predicting many phenomena of 

practical interest. A look at a classical text on heat conduction or, fluid 

mechanics leads to the conclusion that only a tiny fraction of the range of 

practical problems can be solved in closed form. Further, these solutions often 
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Heated wall Insulated section 

Figure 1.1 Grid layout for a numerical solution for the temperature field. 

contain infinite series, special functions, transcendental equations for eigen- 

values, etc., so that their numerical evaluation may present a formidable task.* 

Fortunately, the development of numerical methods and the availability 

of large digital computers hold the promise that the implications of a 

mathematical model can be worked out for almost any practical problem. A 

preliminary idea of the numerical approach to problem solving can be 

obtained by reference to Fig. 1.1. Suppose that we wish to obtain the 

temperature field in the domain shown. It may be sufficient to know the 

values of temperature at discrete points of the domain. One possible method 

is to imagine a grid that fills the domain, and to seek the values of 

temperature at the grid points. We then construct and solve algebraic 

equations for these unknown temperatures. The simplification inherent in the 

use of algebraic equations rather than differential equations is what makes 

numerical methods so powerful and widely applicable. 

1.2-3 Advantages of a Theoretical Calculation 

We shall now list the advantages that a theoretical calculation offers over a 

corresponding experimental investigation. 

*It is not implied here that exact analytical solutions are without practical value. 

Indeed, as we shall see later, some features of numerical methods are constructed by the 

use of simple analytical solutions. Further, there is no better way of checking the 

accuracy of a numerical method than by comparison with an exact analytical solution. 

However, there seems to be little doubt that the methods of classical mathematics do not 

offer a practical way of solving complex engineering problems. 

INTRODUCTION 
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Low cost. The most important advantage of a computational prediction is 

its low cost. In most applications, the cost of a computer run is many orders 

of magnitude lower than the cost of a corresponding experimental investiga- 

tion. This factor assumes increasing importance as the physical situation to be 

studied becomes larger and more complicated. Further, whereas the prices of 

most items are increasing, computing costs are likely to be even lower in the 

future. 

Speed. A computational investigation can be performed with remarkable 

speed. A designer can study the implications of hundreds of different 

configurations in less than a day and choose the optimum design. On the 

other hand, a corresponding experimental investigation, it is easy to imagine, 

would take a very long time. 

Complete information. A computer solution of a problem gives detailed 

and complete information. It can provide the values of all the relevant 

variables (such as velocity, pressure, temperature, concentration, turbulence 

intensity) throughout the domain of interest. Unlike the situation in an 

experiment, there are few inaccessible locations in a computation, and there is 

no counterpart to the flow disturbance caused by the probes. Obviously, no 

experimental study can be expected to measure the distributions of all 

variables over the entire domain. For this reason, even when an experiment is 

performed, there is great value in obtaining a companion computer solution to 

supplement the experimental information. 

Ability to simulate realistic conditions. In a theoretical calculation, 

realistic conditions can be easily simulated. There is no need to resort to 

small-scale or cold-flow models. For a computer program, there is little 

difficulty in having very large or very small dimensions, in treating very low or 

very high temperatures, in handling toxic or flammable substances, or in 

following very fast or very slow processes. 

Ability to simulate ideal conditions. A prediction method is sometimes 

used to study a basic phenomenon, rather than a complex engineering 

application. In the study of a phenomenon, one wants to focus attention on a 

few essential parameters and eliminate all irrelevant features. Thus, many 

idealizations are desirable—for example, two-dimensionality, constant density, 

an adiabatic surface, or infinite reaction rate. In a computation, such 

conditions can be easily and exactly set up. On the other hand, even a very 

careful experiment can barely approximate the idealization. 

1.2-4 Disadvantages of a Theoretical Calculation 

The foregoing advantages are sufficiently impressive to stimulate enthusiasm 

about computer analysis. A blind enthusiasm for any cause is, however, 

undesirable. It is useful to be aware of the drawbacks and limitations. 

As mentioned earlier, a computer analysis works out the implications ‘of a 

mathematical model. The experimental investigation, by contrast, observes the 
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reality itself. The validity of the mathematical model, therefore, limits the 

usefulness of a computation. In this book, we shall be concerned only with 

computational methods and not with mathematical models. Yet, we must note 

that the user of the computer analysis receives an end product that depends 

on both the mathematical model and the numerical method. A perfectly 

satisfactory numerical technique can produce worthless results if an inade- 

quate mathematical model is employed. 

For the purpose of discussing the disadvantages of a theoretical calcula- 

tion, it is, therefore, useful to divide all practical problems into two groups: 

Group A: Problems for which an adequate mathematical description can be 

written. (Examples: heat conduction, laminar flows, simple turbulent 

boundary layers.) 

Group B: Problems for which an adequate mathematical description has not 

yet been worked out. (Examples: complex turbulent flows, certain 

non-Newtonian flows, formation of nitric oxides in turbulent combustion, 

some two-phase flows.) 

Of course, the group into which a given problem falls will be determined by 

what we are prepared to consider as an “adequate” description. 

Disadvantages for Group A. It may be stated that, for most problems of 

Group A, the theoretical calculation suffers from no disadvantages. The 

computer solution then represents an alternative that is highly superior to an 

experimental study. Occasionally, however, one encounters some dis- 

advantages. If the prediction has a very limited objective (such as finding the 

overall pressure drop for a complicated apparatus), the computation may not 

be less expensive than an experiment. For difficult problems involving 

complex geometry, strong nonlinearities, sensitive fluid-property variations, 

etc., a numerical solution may be hard to obtain and would be excessively 

expensive if at all possible. Extremely fast and small-scale phenomena such as 

turbulence, if they are to be computed in all their time-dependent detail by 

solving the unsteady Navier-Stokes equations, are still beyond the practical 

reach of computational methods. Finally, when the mathematical problem 

occasionally admits more than one solution, it is not easy to determine 

whether the computed solution corresponds to reality. 

Research in computational methods is aimed at making them more 

reliable, accurate, and efficient. The disadvantages mentioned here will 

diminish as this research progresses. 

Disadvantages for Group B. The problems of Group B share all the 

disadvantages of Group A; in addition, there is the uncertainty about the 

extent to which the computed results would agree with reality. In such cases, 

some experimental backup is highly desirable. 

Research in mathematical models causes a transfer of problems from 

Group B into Group A. This research consists of proposing a model, working 
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out its implications by computer analysis, and comparing the results with 

experimental data. Thus, computational methods play a key role in this 

research. A striking example of this role can be found in the recent 

development of turbulence models. The currently popular and widely used 

two-equation turbulence models are primarily based on the work of 

Kolmogorov (1942) and Prandtl (1945). It was, however, only in the 1970s, 

when computers and computational methods became more powerful, that the 

turbulence models were put to practical use. 

1.2-5 Choice of Prediction Method 

This discussion about the relative merits of computer analysis and experi- 

mental investigation is not aimed at recommending computation to the 

exclusion of experiment. An appreciation of the strengths and weaknesses of 

both approaches is essential to the proper choice of the appropriate technique. 

There is no doubt that experiment is the only method for investigating a 

new basic phenomenon. In this sense, experiment leads and computation 

follows. It is in the synthesis of a number of interacting known phenomena 

that the computation performs more efficiently. Even then, sufficient valida- 

tion of the computed results by comparison with experimental data is 

required. On the other hand, for the design of experimental apparatus, 

preliminary computations are often helpful, and the amount of experi- 

mentation can usually be significantly reduced if the investigation is supple- 

mented by computation. 

An optimal prediction effort should thus be a judicious combination of 

computation and experiment. The proportions of the two ingredients would 

depend on the nature of the problem, on the objectives of the prediction, and 

on the economic and other constraints of the situation. 

1.3 OUTLINE OF THE BOOK 

This book is designed to unfold the subject in a certain sequence, and the 

reader is urged to follow the same sequence. It will not be profitable to jump 

to a later chapter, as all chapters build upon the material covered in the 

previous ones. The problems at the end of some chapters are intended to give 

the reader both direct experience with and deeper understanding of the 

principles developed in the book. 

The nine chapters that comprise this book can be grouped into three 

different parts of three chapters each. The first three chapters constitute the 

preparatory phase. Here, a preliminary discussion about the mathematical and 

numerical aspects is included, and the particular philosophy of the bgok is 

outlined. Chapters 4-6 contain the main development of the numerical 

method. The last three chapters are devoted to elucidations and applications. 
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Before we begin the task of numerical solution, the physical phenomena 

must be described via appropriate differential equations. This is outlined and 

discussed in Chapter 2. Of special importance in that chapter is the examina- 

tion of the parabolic or elliptic nature of these equations from a physically 

meaningful viewpoint. 

The concept of numerical solution is developed in Chapter 3, where the 

common procedures of constructing numerical methods are described. Among 

these, the method that lends itself to easy physical interpretation is chosen 

and illustrated by means of a very simple example. This introductory material 

is used to formulate general criteria in the form of four basic rules. These 

rules form the guideposts for the development of the numerical method in the 

rest of this book. Although the rules are formulated from physical con- 

siderations alone, they often lead to results that—it is interesting to observe— 

are normally derived from purely mathematical analysis. Furthermore, these 

rules guide us to better formulations that may not have been suggested by 

standard mathematical methods. 

The construction of the numerical method begins in Chapter 4. It is 

carried out in three stages. Heat conduction (i.e., the general problem without 

the convection term) is treated in Chapter 4. Chapter 5 concentrates on the 

interaction of convection and conduction, with the flow field regarded as given. 

Finally, the calculation of the velocity field itself is dealt with in Chapter 6. 

Readers who are interested in fluid flow alone, and not in heat transfer, 

should note that Chapter 6 is not a self-contained chapter. It describes only 

the additional features required for the fluid-flow calculation, the other details 

having already been given in Chapters 4 and 5. Thus, Chapter 4 does not 

merely deal with heat conduction; it completes much of the groundwork 

needed for fluid flow. The treatment of convection in Chapter 5 is also 

equally applicable to fluid-flow calculation. This approach—handling fluid flow 

through heat transfer—may be unfamiliar to some readers, but it appears to be 

an effective pedagogical technique. The early focus on heat transfer enables us 

to conduct all the preliminary discussion in terms of temperature, which is an 

easy-to-understand scalar variable. It also reinforces the conceptual unity 

between variables such as temperature and momentum, which is useful in 

understanding and interpreting results. 

Another technique that will be in evidence in these chapters is the use of 

one-dimensional situations to construct the basic algorithm, which is then 

quickly generalized to multidimensional cases. The one-dimensional problem 

serves to keep the algebraic complication to a minimum and to focus 

attention on the significant issues. 

Chapter 7 is a compilation of a number of elucidating remarks and 

suggestions that can be properly appreciated after the reader has had an 

overview of the method through familiarity with the first six chapters. 

Chapter 8 deals with calculation procedures that can be considered as special 

cases of the general method developed in the book. The control-volume-based 

INTRODUCTION 
9 

finite-element method, which is briefly described in Section 8.4, is, however, 

an extension rather than a special case of the general method. 

The last chapter serves to give the reader a taste of possible applications 

of the method. It contains a brief description of some of the problems solved 

by the author and his co-workers. This is, of course, only a very small fraction 

of the totality of interesting problems that are within the reach of the 

method. The possibilities are limited only by the imagination of the user. 
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CHAPTER 

TWO 

MATHEMATICAL DESCRIPTION 

OF PHYSICAL PHENOMENA 

The numerical solution of heat transfer, fluid flow, and other related processes 

can begin when the laws governing these processes have been expressed in 

mathematical form, generally in terms of differential equations. For a detailed 

and complete derivation of these equations, the reader should turn to a 

standard textbook. Our purpose here is to develop familiarity with the form 

and the meaning of these equations. It will be shown that all the equations of 

relevance here possess a common form, the identification of which is the first 

step toward constructing a general solution procedure. We shall also discuss 

seme characteristics of the independent variables used in these equations. 

2.1 GOVERNING DIFFERENTIAL EQUATIONS 

2.1-1 Meaning of a Differential Equation 

The individual differential equations that we shall encounter express a certain 

conservation principle. Each equation employs a certain physical quantity as 

its dependent variable and implies that there must be a balance among the 

various factors that influence the variable. The dependent variables of these 

differential equations are usually specific properties, i.e., quantities expressed 

on a unit-mass basis. Examples” are mass fraction, velocity (i.e., momentum 

per unit mass), and specific enthalpy. 

Temperature, which is quite frequently used as a dependent variable} is not a 

specific property; it arises from more basic equations employing specific internal energy 

or specific enthatpy as the dependent variable. 

11 
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The terms in a differential equation of this type denote influences on a 

unit-volume basis. An example will make this clear. Suppose J denotes a flux 

influencing a typical dependent variable ¢. Let us consider the control volume 

of dimensions dx, dy, dz shown in Fig. 2.1. The flux J, (which is the 

x-direction component of J) is shown entering one face of area dy dz, while 

the flux leaving the opposite face is shown as J, + (aJ,,/ax) dx. Thus, the net 

efflux is (@/,/ax) dx dy dz over the area of the face. Considering the 

contributions of the y and z directions as well and noting that dx dy dz is the 

volume of the region considered, we have 

Ady 4 Ody 4 Oe Net effl er unit volume = 
ee ee ax oy 0z 

= div J. (2.1) 

This interpretation of div J will be particularly useful to us because, as we shail 

see later, our numerical method will be constructed by performing a balance 

over a control volume. 

Another example of a term expressed on a unit-volume basis is the 

rate-of-change term 0(p¢)/dt. If @ is a specific property and p is the density, 

then pọ denotes the amount of the corresponding extensive property con- 

tained in a unit volume. Thus, 0(p¢)/dt is the rate of change of the relevant 

property per unit volume. 

A differential equation is a compilation of such terms, each representing 

an influence on a unit-volume basis, and all the terms together implying a 

balance or conservation. We shall now take as examples a few standard 

differential equations, to find a general form. 

2.1-2 Conservation of a Chemical Species 

Let m; denote the mass fraction* of a chemical species. In the presence of a 

velocity field u, the conservation of m; is expressed as 

ð : 
T (om) + div (eum, + J) = Ri . (2.2) 

Here ə(pm)/ðt denotes, as explained earlier, the rate of change of the mass of 

the chemical species per unit volume. The quantity pum; is the convection 

flux of the species, i.e., the flux carried by the general flow field pu. The 

symbol J; stands for the diffusion flux, which is normally caused by the 

¥*The mass fraction my of a chemical species / is defined as the ratio of the mass of 

the species / (contained in a given volume) to the total mass of the mixture (contained in 

the same volume). 
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Figure 2.1 Flux balance over a control volume. 

gradients of my. The divergence of the two fluxes (convection and diffusion) 

forms the second term of the differential equation. The quantity R; on the 

right-hand side is the rate of generation of the chemical species per unit 

volume. The generation is caused by chemical reaction. Of course, R; can have 

a positive or negative value depending on whether the reaction actually 

produces or destroys the chemical species, and R; is zero for a nonreacting 

species. 

If the diffusion flux J; is expressed by the use of Fick’s law of diffusion, 

we can write 

Ji = -T; grad Mi, (2.3) 

where T; is the diffusion coefficient. The substitution of Eq. (2.3) into (2.2) 

leads to 

a 
ð s : 
JF (pem) + div (pum;) = div (T; grad m) + R; . (2.4) 

2.1-3 The Energy Equation 

The energy equation in its most general form contains a large number of 

influences. Since we are primarily interested in the form rather than in the 

details of the equation, it will be sufficient to consider some restricted cases. 

For a steady low-velocity flow with negligible viscous dissipation, the 

energy equation can be written as 

div (puh) = div (k grad T) + Sh, (2.5) 

where h is the specific enthalpy, k is the thermal conductivity, T is the 

temperature, and S} is the volumetric rate of heat generation. The term div (k 

grad T) represents the influence of conduction heat transfer within the fluid, 

according to the Fourier law of conduction. 
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For ideal gases and for solids and liquids, we can write 

c grad T = grad h , (2.6) 

where c is the constant-pressure specific heat. With this substitution, the 

energy equation becomes 

div (puh) = div - grad n) + Sh. (2.7) 

If c is constant, the h ~ T relation simplifies to 

h=cT, (2.8) 

which would lead to 

: . [k Sh 
div (puT) = div F grad T} + Pat (2.9) 

In this manner, either the enthalpy or the temperature can be chosen as the 

dependent variable. 

The steady heat-conduction situation is obtained by setting the velocity u 

to zero; thus, 

div (k grad T) + Sh =0. (2.10) 

2.1-4 A Momentum Equation 

The differential equation governing the conservation of momentum in a given 

direction for a Newtonian fluid can be written along similar lines; however, 

the complication is greater because both shear and normal stresses must be 

considered and because the Stokes viscosity law is more complicated than 

Fick’s law or Fourier’s law. With u denoting the x-direction velocity, we write 

the corresponding momentum equation as 

ð ; : op 
i (pu) + div (puu) = div (u grad u) — 3 + Bs + Vx, (211) 

where u is the viscosity, p is the pressure, By is the x-direction body force per 

unit volume, and V, stands for the viscous terms that are in addition to those 

expressed by div (u grad u). 

2.1-5 The Time-averaged Equations for Turbulent Flow 

Turbulent flows are commonly encountered in practical applications. It is the 

time-mean behavior of these flows that is usually of practical interest. 
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Therefore, the equations for unsteady laminar flow are converted into the time- 

averaged equations for turbulent flow by an averaging operation in which it is 

assumed that there are rapid and random fluctuations about the mean value. The 

additional terms arising from this operation are the so-called Reynolds stresses, 

turbulent heat flux, turbulent diffusion flux, etc. To express these fluxes in 

terms of the mean properties of the flow is the task of a turbulence model. 

Many turbulence models employ the concept of a turbulent viscosity or a 

turbulent diffusivity to express the turbulent stresses and fluxes. The result is 

that the time-averaged equations for turbulent flow have the same appearance 

as the equations for laminar flow, but the laminar exchange coefficients such 

as viscosity, diffusivity, and conductivity are replaced by effective (i.e., 

laminar plus turbulent) exchange coefficients. From a computational 

viewpoint, a turbulent flow within this framework is equivalent to a laminar 

flow with a rather complicated prescription of viscosity. (The same idea is 

applicable to non-Newtonian flows, which can be thought of as flows in which 

the viscosity depends on the velocity gradient.) 

2.1-6 The Turbulence-Kinetic-Energy Equation 

The currently popular “two-equation models” of turbulence (Launder and 

Spalding, 1972, 1974) employ, as one of the equations, the equation for the 

kinetic energy k of the fluctuating motion, which reads 

Š (pk) + div (puk) = div (Fp grad k) + G — pe, (2.12) 

where IT% is the diffusion coefficient for k, G is the rate of generation of 

turbulence energy, and e is the kinematic rate of dissipation. The quantity 

G— pe is the net source term in the equation. A similar differential equation 

governs the variable e. 

2.1-7 The General Differential Equation 

This brief journey through some of the relevant differential equations has 

indicated that all the dependent variables of interest here seem to obey a 

generalized conservation principle. If the dependent variable is denoted by 4, 

the general differential equation is 

Z (pd) + div (eug) = div (T grad h) + S, (2.13) 

where T is the diffusion coefficient, and S is the source term. The quantities 

T and S are specific to a particular meaning of ¢. (Indeed, we should’ have 

used the symbols Ty and Sy; this would, however, lead to too many 

subscripts in subsequent work.) 
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The four terms in the general differential equation are the unsteady term, 

the convection term, the diffusion term, and the source term. The dependent 

variable @ can stand for a variety of different quantities, such as the mass 

fraction of a chemical species, the enthalpy or the temperature, a velocity 

component, the turbulence kinetic energy, or a turbulence length scale. 

Accordingly, for each of these variables, an appropriate meaning will have to 

be given to the diffusion coefficient I and the source term S. 

-Not all diffusion fluxes are governed by the gradient of the relevant 

variable. The use of div (T grad ¢) as the diffusion term does not, however, 

limit the general @ equation to gradient-driven diffusion processes. Whatever 

cannot be fitted into the nominal diffusion term can always be expressed as a 

part of the source term; in fact, the diffusion coefficient T can even be set 

equal to zero if desired. A gradient-diffusion term has been explicitly included 

in the general @ equation because most dependent variables do require a 

prominent diffusion term of this nature. 

The density appearing in Eq. (2.13) may be related, via an equation of 

state, to variables such as mass fraction and temperature. These variables and 

the velocity components obey the general differential equation. Further, the 

flow field should satisfy an additional constraint, namely, the mass- 

conservation or the continuity equation, which is 

L + div (pu) =0 . (2.14) 

We have written Eqs. (2.13) and (2.14) in vector form. Another useful 

representation is the Cartesian-tensor form of these equations: 

2 8 oup = 2- [r 2% a; (pg) + dx; (pu;ġ) ax) (r 3 +S (2.15) 

0p ð 
D earns J=0 5 : 
at * iy (pu;) (2.16) 

where the subscript j can take the values 1, 2, 3, denoting the three space 

coordinates. When a subscript is repeated in a term, a summation of three 

terms is implied; for example, 

a a ð ð ao j= — pi aperiche pee 3x) (pu;) ax, (pu; ) ox, (pu2) a (pu3) (2.17) 

a fpa 2 (pa), 2 (pao), 2 (r 
ax; (r 2) əxi (r æ) 2 0x2 (r 2.) $ 0x3 (r 2) ̀ (2.18) 

An immediate benefit of the Cartesian-tensor form is that the one-dimensional 

form of the equation is obtained by simply dropping the subscript j. 
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The procedure for casting any particular differential equation into the 

general form (2.13) is to manipulate it until, for the chosen dependent 

variable, the unsteady term and the convection and diffusion terms conform 

to the standard form. The coefficient of grad @ in the diffusion term is then 

taken as the expression for I’, and the remaining terms on the right-hand side 

are collectively defined as the source term S. 

Although we have so far considered all the variables as dimensional 

quantities, it is at times more convenient to work with dimensionless variables. 

Again, any particular differential equation written in terms of dimensionless 

variables can be regarded as possessing the general form (2.13), with ¢ 

standing for the dimensionless dependent variable, and with T and S being the 

dimensionless forms of the diffusion coefficient and the source term. In many 

cases, the dimensionless value of T may simply be unity, while S may take the 

value of 0 or 1. 

The recognition that all the relevant differential equations for heat and 

mass transfer, fluid flow, turbulence, and related phenomena can be 

thought of as particular cases of the general @ equation is an important 

time-saving step. As a consequence, we need to concern ourselves with the 

numerical solution of only Eq. (2.13). Even in the construction of a computer 

program, it is sufficient to write a general sequence of instructions for solving 

Eq. (2.13), which can be repeatedly used for different meanings of @ along 

with appropriate expressions for T and S, and, of course, with appropriate 

initial and boundary conditions. Thus, the concept of the general ¢ equation 

enables us to formulate a general numerical method and to prepare general- 

purpose computer programs. 

2.2 NATURE OF COORDINATES 

So far we have given attention to the dependent variables. Now we shall turn 

to the independent variables and discuss their properties from the computa- 

tional point of view. 

2.2-1 Independent Variables 

The dependent variable @ would, in general, be a function of three space 

coordinates and time. Thus, 

d= o(, y, z, t), (2.19) 

where x, y, z, and ¢ are the independent variables. In a numerical solution, we 

shall choose the values of the independent variables at which the values of ¢ 

are to be calculated. a 

Fortunately, not all problems require consideration of all four 
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independent variables. The smaller the number of participating independent 

variables, the fewer will be the locations (or grid points) at which the ¢ values 

must be calculated (provided that otherwise the problems are of comparable 

complexity). 

When the relevant physical quantities depend on only one space 

coordinate, the situation is called one-dimensional. Dependence on two space 

coordinates leads to a two-dimensional situation, and on three space co- 

ordinates to a three-dimensional situation. When the problem contains no 

dependence on time, it is called steady. Otherwise, it is called unsteady or 

time-dependent. Considering the dependence on space and time together, we 

shall describe a situation as an unsteady one-dimensional problem, a steady 

three-dimensional flow, etc. 

The choice of independent coordinates as expressed by Eq. (2.19) is not 

the only possibility. Instead of describing a steady temperature distribution as 

T(x, y, z), we may write 

z=2(T, x,y), (2.20) 

where z becomes the dependent variable that stands for the height of an 

isothermal surface corresponding to T at the location (x, y). A method based 

on such a representation has been developed by Dix and Cizek (1970) and by 

Crank and co-workers (Crank and Phahle, 1973; Crank and Gupta, 1975; 

Crank and Crowley, 1978) and is known as the isotherm migration method. 

The method is, however, limited to temperature fields that are monotonic 

functions of the coordinates; for more general fields, the height z could have 

several values for given values of T, x, and y; this makes z, for computational 

purposes, unsuitable as a dependent variable. 

2.2-2 Proper Choice of Coordinates 

Since the number of grid points would, in general, be related to the number 

of independent variables, there is a significant computational saving to be 

achieved by working with fewer independent variables. A judicious choice of 

the coordinate system can sometimes reduce the number of independent 

variables required. 

Although we have used x, y, and z as the space coordinates, it is not 

implied that we must use the Cartesian coordinate system; any description of 

the spatial location will do. We shall now illustrate, by a few specific 

examples, how the choice of coordinates influences the number of 

independent variables. 

1. The flow ‘around an airplane that is moving with constant velocity is 

unsteady when viewed from a stationary coordinate system, but steady 

with respect to a moving coordinate system attached to the airplane. 
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2. The axisymmetric flow in a circular pipe appears to be three-dimensional in 

a Cartesian coordinate system but is two-dimensional in cylindrical polar 

coordinates r, @, z, since 

o = ¢(7, z) (2.21) 

with no dependence on @. 

3. Transformed coordinates offer further possibilities of fewer independent 

variables. For example: 

a. A two-dimensional laminar boundary layer on a flat plate gives a 

similarity behavior such that the velocity u depends on 7 alone, where 

ne sare (2.22) 

and where c is a dimensional constant. Thus, a two-dimensional problem 

is reduced to a one-dimensional problem. 

b. Unsteady heat conduction in a semi-infinite solid has x and ¢ as the 

independent variables. However, for some simple boundary conditions, 

the temperature can be shown to depend on alone, where 

= V (2.23) 

with C representing an appropriate dimensional constant. 

4. A change of the dependent variable can lead to a reduction in the number 

of independent variables. For example: 

a. In a fully developed duct flow, the temperature T depends on the 

streamwise coordinate x and the cross-stream coordinate y. However, in 

the thermally developed regime with uniform wall temperature Tẹ, we 

have 

0 =0{y), (2.24) 

where 

9 = T= T 

Ts — Tw 

and T, is the bulk temperature, which varies with x. 

b. A plane free jet is a two-dimensional flow. However, we can write 
4 . 

u=u(n), (2.25) 
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where 

aU y 
u=—, SS. 2.26 i n= (2.26) 

Here u, represents the center-line velocity, y is the cross-stream 

coordinate, and ô is a characteristic jet width. Both u, and ô vary with 

the streamwise coordinate x. 

Although most of the discussion in this book will be conducted in terms 

of x, y, Z, and t as the independent variables, it should be remembered that 

all the ideas and practices are equally applicable to the transformed or 

dimensionless variables illustrated here. Indeed, for computational efficiency, 

numerical methods should always be used with the appropriate choice of 

coordinates. 

2.2-3 One-Way and Two-Way Coordinates 

We shall now consider new concepts about the properties of coordinates and 

then establish a connection between these and the standard mathematical 

terminology. 

Definitions. A two-way coordinate is such that the conditions at a given 

location in that coordinate are influenced by changes in conditions on either 

side of that location. A one-way coordinate is such that the conditions at a 

given location in that coordinate are influenced by changes in conditions on 

only one side of that location. 

Examples. One-dimensional steady heat conduction in a rod provides an 

example of a two-way coordinate. The temperature of any given point in the 

rod can be influenced by changing the temperature of either end. Normally, 

space coordinates are two-way coordinates. Time, on the other hand, is always 

a one-way coordinate. During the unsteady cooling of a solid, the temperature 

at a given instant can be influenced by changing only those conditions that 

prevailed before that instant. It is a matter of common experience that 

yesterday’s events affect today’s happenings, but tomorrow’s conditions have 

no influence on what happens today. 

Space as a one-way coordinate. What is more interesting is that even a 

space coordinate can very nearly become one-way under the action of fluid 

flow. If there is a strong unidirectional flow in the coordinate direction, then 

significant influences travel only from upstream to downstream. The condi- 

tions at a point are then affected largely by the upstream conditions, and very 

little by the downstream ones. Thè one-way nature of a space coordinate is an 

approximation. It is true that convection is a one-way process, but diffusion 

(which is always present) has two-way influences. However, when the. flow 

rate is large, convection overpowers diffusion and thus makes the space 

coordinate nearly one-way. 
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Parabolic, elliptic, hyperbolic. It appears that the mathematical terms 

parabolic and elliptic, which are used for the classification of differential 

equations, correspond to our computational concepts of one-way and two-way 

coordinates. The term parabolic indicates a one-way behavior, while elliptic 

signifies the two-way concept. 

It would be more meaningful if situations were described as being 

parabolic or elliptic in a given coordinate. Thus, the unsteady heat conduction 

problem, which is normally called parabolic, is actually parabolic in time and 

elliptic in the space coordinates. The steady heat conduction problem is 

elliptic in all coordinates. A two-dimensional boundary layer is parabolic in 

the streamwise coordinate and elliptic in the cross-stream coordinate. 

Since such descriptions are unconventional, a connection with established 

practice can perhaps be achieved by the following rule: 

A situation is parabolic if there exists at least one one-way coordinate; 

otherwise, it is elliptic. 

A flow with one one-way space coordinate is sometimes called a 

boundary-layer-type flow, while a flow with all two-way coordinates is 

referred to as a recirculating flow [see the titles of the books by Patankar and 

Spalding (1970) and Gosman, Pun, Runchal, Spalding, and Wolfshtein 

(1969)}]. 

What about the third category, namely, hyperbolic? It so happens that a 

hyperbolic situation does not neatly fit into the computational classification. 

A hyperbolic problem has a kind of one-way behavior, which is, however, not 

along coordinate directions but along special lines called characteristics. There 

are numerical methods that make use of the characteristic lines, but they are 

restricted to hyperbolic problems. On the other hand, the numerical method 

to be developed in this book does not take advantage of the special nature of 

a hyperbolic problem. We shall treat hyperbolic problems as members of the 

general class of elliptic problems (i.e., all two-way coordinates). 

Computational implications. The motivation for the foregoing discussion 

about one-way and two-way coordinates is that, if a one-way coordinate can 

be identified in a given situation, substantial economy of computer storage 

and computer time is possible. Let us consider an unsteady two-dimensional 

heat conduction problem. We shall construct a two-dimensional array of grid 

points in the calculation domain. At any instant of time, there will be a 

corresponding two-dimensional temperature field. Such a field will have to be 

handled in the computer for each of the successive instants of time. However, 

since time is a one-way coordinate, the temperature field at a given time is 

not affected by the future temperature fields. Indeed, the entire unsteady 

problem can be reduced to the required repetitions of one basic step, namely 

this: Given the temperature field at time £, find the temperature field at time 

t + At. Thus, computer storage will be needed only for these two temperature 
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fields; the same storage space can be used, over and over again, for all the 

time steps. 

In this manner, starting with a given initial temperature field, we are able 

to “march” forward to successive instants of time. During any time step, only 

one two-dimensional array of temperatures forms the unknowns to be treated 

simultaneously.” They are decoupled from all future values of temperature, 

and the previous values that influence them are known. Thus, we need to 

solve a much simpler set of equations, with a consequent saving of computer 

time. 

In a similar manner, a two-dimensional boundary layer is computed by 

marching in the streamwise coordinate. With values of the dependent variables 

given along one cross-stream line at an upstream station, the values along 

successive cross-stream lines are obtained. Only one-dimensional computer 

storage is needed for handling the two-dimensional flow. Similarly, a three- 

dimensional duct flow that is parabolic in the streamwise direction can be 

treated as a series of two-dimensional problems for successive cross-stream 

planes. 

In this book, we shall give only occasional attention to the one-way space 

coordinate. However, its great potential for saving computer storage and 

computer time should always be kept in mind. 

PROBLEMS 

2.1 Write the unsteady heat conduction equation for the case of constant specific heat c. 

Show that, with reference to the general equation (2.13), this implies ¢ = T, u=0, 

T = k/c, and S = Sp/c. 

2.2 Derive the expressions for ¢, T, and S if in Problem 2.1 the specific heat c cannot be 

taken as constant. (Hint: Use the internal energy i as the dependent variable; note that 

di =c aT.) 

2.3 If Eq. (2.7) were to be written for an unsteady situation, show that the resulting 

form can be expressed as 6 =h, T= k/e, and S = Sp + ap/at. i 

2.4 Derive an expression for Vy in Eq. (2.11). Hence show that V, becomes zero when 

the density and viscosity are constant. (Use the continuity equation.) 

2.5 Define an effective pressure by 

P=p—indivu, 

where p is the thermodynamic pressure. If the viscosity is constant but the density p is 

not constant (and hence div u#0), show that tne term Vy in Eq. (2.11) can be 

combined with the pressure gradient such that 

*It is assumed here that an implicit method is to be employed. This matter is 

discussed in detail in Chapter 4. 
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2.6 If the continuity equation (2.14) were to be regarded as a special case of the general 

equation (2.13), what would be the expressions for ¢, T, and S? 

2.7 Consider a mixture of various chemical species. Define the mixture enthalpy by 

h= E my h;, where m; is the mass fraction of a typical species, and hy is its specific 

enthalpy, which is given by 

T 

hy =hy +| c aT . 
0 

Here hy is a constant, and c; is the constant-pressure specific heat of species J. Write the 

steady-state enthalpy-conservation equation and hence show that ¢=A, T=k/e, and 

S=Sp +div = [Ti — k/c)h, grad mj}, where c is the mixture specific heat, given by 

x my cy. 



CHAPTER 

THREE 

DISCRETIZATION METHODS 

So far we have seen that there are significant benefits in obtaining a 

theoretical prediction of physical phenomena. The phenomena of interest here 

are governed by differential equations, which we have represented by a general 

equation for the variable ¢. Now our main task is to develop the means of 

solving this equation. 

For ease of understanding, we shall assume in this chapter that the 

variable @ is a function of only one independent variable x. However, the 

ideas developed here continue to be applicable when more than one inde- 

pendent variable is active. 

3.1 THE NATURE OF NUMERICAL METHODS 

3.1-1 The Task 

A numerical solution of a differential equation consists of a set of numbers 

from which the distribution of the dependent variable can be constructed. 

In this sense, a numerical method is akin to a laboratory experiment, in which 

a set of instrument readings enables us to establish the distribution of the 

measured quantity in the domain under investigation. The numerical analyst 

and the laboratory experimenter both must remain content with only a finite 

number of numerical values as the outcome, although this number can; at 

least in principle, be made large enough for practical purposes. 

25 
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Let us suppose that we decide to represent the variation of ¢ by a 

polynomial in x, 

$ = ao tax + agx? +> + ayx™, (3.1) 

and employ a numerical method to find the finite number of coefficients ao, 

a1, a2, ..., Am. This will enable us to evaluate ġ at any location x by 

substituting the value of x and the values of the a’s into Eq. (3.1). This 

procedure is, however, somewhat inconvenient if our ultimate interest is to 

obtain the values of @ at various locations. The values of the a’s are, by 

themselves, not particularly meaningful, and the substitution operation must 

be carried out to arrive at the required values of ¢. This leads us to the 

following thought: Why not construct a method that employs the values of @ 

at a number of given points as the primary unknowns? Indeed, most 

numerical methods for solving differential equations do belong in this 

category, and therefore we shall limit our attention to such methods. 

Thus, a numerical method treats as its basic unknowns the values of the 

dependent variable at a finite number of locations (called the grid points) in 

the calculation domain. The method includes the tasks of providing a set of 

algebraic equations for these unknowns and of prescribing an algorithm for 

solving the equations. 

3.1-2 The Discretization Concept 

In focusing attention on the values at the grid points, we have replaced the 

continuous information contained in the exact solution of the differential 

equation with discrete values. We have thus discretized the distribution of ¢, 

and it is appropriate to refer to this class of numerical methods as discretiza- 

tion methods. 

The algebraic equations involving the unknown values of @ at chosen grid 

points, which we shall now name the discretization equations, are derived 

from the differential equation governing ¢. In this derivation, we must employ 

some assumption about how ¢ varies between the grid points. Although this 

“profile” of @ could be chosen such that a single algebraic expression suffices 

for the whole calculation domain, it is often more practical to use piecewise 

profiles such that a given segment describes the variation of ġ over only a 

small region in terms of the @ values at the grid points within and around that 

region. Thus, it is common to subdivide the calculation domain into a number 

of subdomains or elements such that a separate profile assumption can be 

associated with each subdomain. 

In this manner, we encounter the discretization concept in another 

context. The continuum calculation domain has been discretized. It is this 

systematic discretization of space and of the dependent variables that makes it 
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possible to replace the governing differential equations with simple algebraic 

equations, which can be solved with relative ease. 

3.1-3 The Structure of the Discretization Equation 

A discretization equation is an algebraic relation connecting the values of ġ 

for a group of grid points. Such an equation is derived from the differential 

equation governing ¢ and thus expresses the same physical information as the 

differential equation. That only a few grid points participate in a given 

discretization equation is a consequence of the piecewise nature of the profiles 

chosen. The value of ¢ at a grid point thereby influences the distribution of ¢ 

only in its immediate neighborhood. As the number of grid points becomes 

very large, the solution of the discretization equations is expected to approach 

the exact solution of the corresponding differential equation. This follows 

from the consideration that, as the grid points get closer together, the change 

in @ between neighboring grid points becomes small, and then the actual 

details of the profile assumption become unimportant. 

For a given differential equation, the possible discretization equations are 

by no means unique, although all types of discretization equations are, in the 

limit of a very large number of grid points, expected to give the same 

solution. The different types arise from the differences in the profile 

assumptions and in the methods of derivation. 

Until now we have deliberately refrained from making reference to 

finite-difference and finite-element methods. Now it may be stated that these 

can be thought of as two alternative versions of the discretization method, 

which we have described in general terms. The distinction between the 

finite-difference method and the finite-element method results from the ways 

of choosing the profiles and deriving the discretization equations. The method 

that is to be the main focus of attention in this book has the appearance of a 

finite-difference method, but it employs many ideas that are typical of the 

finite-element methodology. To call the present method a finite-difference 

method might convey an adherence to the conventional finite-difference 

practice. For this reason, we shall refer to it simply as a discretization 

method. Also, we shall note in Chapter 8 how a method that has the 

appearance of a finite-element method can be constructed from the general 

principles presented in this book. 

3.2 METHODS OF DERIVING 
THE DISCRETIZATION EQUATIONS 

For a given differential equation, the required discretization equations can be 

derived in many ways. Here, we shall outline a few common methods and 

then indicate a preference. 
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3.2-1 Taylor-Series F ormulation 

The usual procedure for deriving finite-difference equations consists of 

approximating the derivatives in the differential equation via a truncated 

Taylor series. Let us consider the grid points shown in Fig. 3.1. For 

grid point 2, located midway between grid points 1 and 3 such that 

Ax =X “X1 = X3 T X2; the Taylor-series expansion around 2 gives 

= — do 1 2 d*o i bes 3.2 

Qi ġı — Ax (2), + 5 (Ax) (2), 
(3.2) 

= do 1 2 d* eee 3.3 

and 3 = 2 + Ax (2), + 5 (Ax) (a2) + : (3.3) 

Truncating the series just after the third term, and adding and subtracting the 

two equations, we obtain 

dọ) _ os —% GA) 

dx 2 2 Ax 
i 

d?o) _ Qi + ¢3 — 2¢2 
and 

EA, = Axe 
y (3.5) 

The substitution of such expressions into the differential equation leads to the 

finite-difference equation. 

The method includes the assumption that the variation of ¢ is somewhat 

like a polynomial in x, so that the higher derivatives are unimportant. This 

assumption, however, leads to an undesirable formulation when, for example, 

exponential variations are encountered. (We shall refer to this matter again in 

Chapter 5.) The Taylor-series formulation is relatively straightforward but 

allows less flexibility and provides little insight into the physical meanings of 

the terms.” 

*This is admittedly an entirely subjective view. Someone with proper mathematical 

training may find the Taylor-series method highly illuminating and meaningful. 

1 2 3 
eG 

ees ere 
e 
x 

Figure 3.1 Three successive grid points used for the Taylor-series expansion. 
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3.2-2 Variational Formulation 

Another method of obtaining the discretization equations is based on the 

calculus of variations. To understand the method fully, the reader should have 

sufficient knowledge of this branch of calculus. However, a general apprecia- 

tion of the main ingredients of the formulation is all that is needed for the 

present purposes. 

The calculus of variations shows that solving certain differential equations 

js equivalent to minimizing a related quantity called the functional. This 

equivalence is known as a variational principle. If the functional is minimized 

with respect to the grid-point values of the dependent variable, the resulting 

conditions give the required discretization equations. The variational 

formulation is very commonly employed in finite-element methods for stress 

analysis, where it can be linked to the virtual-work principle. In addition to its 

algebraic and conceptual complexity, the main drawback of this formulation is 

its limited applicability, since a variational principle does not exist for all 

differential equations of interest. 

3.2-3 Method of Weighted Residuals 

A powerful method for solving differential equations is the method of 

weighted residuals, which is described in detail by Finlayson (1972). The basic 

concept is simple and interesting. Let the differential equation be represented 

by 

L(g) = 0. (3.6) 

a 

Further, let us assume an approximate solution @ that contains a number of 

undetermined parameters, for example, 

$= + a,x + a,x? +++ + Ham”, (3.7) 

the a’s being the parameters. The substitution of @ into the differential 

equation leaves a residual R, defined as 

R=L(@). (3.8) 

We wish to make this residual small in some sense. Let us propose that 

J WR dx =0, (3.9) 

a pe : A; 
where W is a weighting function and the integration is performed over ‘the 

domain of interest. By choosing a succession of weighting functions, we can 
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generate as many equations as are required for evaluating the parameters. 

These algebraic equations containing the parameters as the unknowns are 

solved to obtain the approximate solution to the differential equation. 

Different versions of the method (known by specific names) result from the 

choice of different classes of weighting functions. 

The method was very popular in boundary-layer analysis before the 

finite-difference method nearly replaced it. However, a connection with the 

finite-difference method, or rather with_the discretization method, can be 

established if the approximate solution ¢, instead of being a single algebraic 

expression over the whole domain, is constructed via piecewise profiles with 

the grid-point values of ġ as the unknown parameters. Indeed, much of the 

recént development of the finite-element technique is also based on piecewise 

profiles used in conjunction with a particular weighted-residual practice known 

as the Galerkin method. 

The simplest weighting function is W=1. From this, a number of 

weighted-residual equations can be generated by dividing the calculation 

domain into subdomains or control volumes, and setting the weighting 

function to be unity over one subdomain at a time and zero everywhere else. 

This variant of the method of weighted residuals is called the subdomain 

method or the control-volume formulation. It implies that the integral of the 

residual over each control volume must become zero. Since we shall adopt the 

control-volume approach in this book, a more detailed discussion is desirable, 

which now follows. 

3.2-4 Control-Volume Formulation 

Often elementary textbooks on heat transfer derive the finite-difference 

equation via the Taylor-series method and then demonstrate that the resulting 

equation is consistent with a heat balance over a small region surrounding a 

grid point. We have also seen that the control-volume formulation can be 

regarded as a special version of the method of weighted residuals. The basic 

idea of the control-volume formulation is easy to understand and lends itself 

to direct physical interpretation. The calculation domain is divided into a 

number of nonoverlapping control volumes such that there is one control 

volume surrounding each grid point. The differential equation is integrated 

over each control volume. Piecewise profiles expressing the variation of ¢ 

between the grid points are used to evaluate the required integrals. The result 

is the discretization equation containing the values of ¢ for a group of grid points. 

The discretization equation obtained in this manner expresses the con- 

servation principle for ¢ for the finite control volume, just as the differential 

equation expresses it for an infinitesimal control volume.* 

Indeed, deriving the control-volume discretization equation by integrating the 

differential equation over a finite control volume is a rather roundabout process, much 
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The most attractive feature of the control-volume formulation is that the 

resulting solution would imply that the integral conservation of quantities 

such as mass, momentum, and energy is exactly satisfied over any group of 

control volumes and, of course, over the whole calculation domain. This 

characteristic exists for any number of grid points—not just in a limiting sense 

when the number of grid points becomes large. Thus, even the coarse-grid 

solution exhibits exact integral balances. 

When the discretization equations are solved to obtain the grid-point 

values of the dependent variable, the result can be viewed in two different 

ways. In the finite-element method and in most weighted-residual methods, 

the assumed variation of ¢ consisting of the grid-point values and the 

interpolation functions (or profiles) between the grid points is taken as the 

approximate solution. In the finite-difference method, however, only the 

grid-point values of ¢ are considered to constitute the solution, without any 

explicit reference as to how @ varies between the grid points. This is akin to a 

laboratory experiment where the distribution of a quantity is obtained in 

terms of the measured values at some discrete locations without any statement 

about the variation between these locations. In our control-volume approach, 

we shall also adopt this view. We shall seek the solution in the form of the 

grid-point values only. The interpolation formulas or the profiles will be 

regarded as auxiliary relations needed to evaluate the required integrals in the 

formulation. Once the discretization equations are derived, the profile assump- 

tions can be forgotten. This viewpoint permits complete freedom of choice in 

employing, if we wish, different profile assumptions for integrating different 

terms in the differential equation. 

To make the foregoing discussion more concrete, we shall now derive the 

control-volume discretization equation for a simple situation. 
e 

3.3 AN ILLUSTRATIVE EXAMPLE 

Let us consider steady one-dimensional heat conduction governed by 

d f 4T\ 45. Í ( ) S=0, (3.10) 

where k is the thermal conductivity, T is the temperature, and S is the rate of 

heat generation per unit volume. 

like preparing mashed potatoes from dehydrated potato powder. After all, textbook 

derivations of differential equations always start from the conservation principle applied 

to a small control volume. It is useful to imagine ourselves to be in the pre-calculus{ days; 

then the control-volume equation would have been our only way of stating “the 

conservation principle. 
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Preparation. To derive the discretization equation, we shall employ the 

grid-point cluster shown in Fig. 3.2. We focus attention on the grid point P, 

which has the grid points E and W as its neighbors. (E denotes the east side, 

ie. the positive x direction, while W stands for west or the negative x direc- 

tion.) The dashed lines show the faces of the control volume; their exact 

locations are unimportant for the time being. The letters e and w denote these 

faces. For the one-dimensional problem under consideration, we shall assume a 

unit thickness in the y and z directions. Thus, the volume of the control 

volume shown is Ax X 1X1. If we integrate Eq. (3.10) over the control 

volume, we get 

e 

aT aT 
—] >~ —] + dx=0. ; 
( a) ( a) ae oy 

w 

Profile assumption. To make further progress, we need a profile assump- 

tion or an interpolation formula. Two simple profile assumptions are shown in 

Fig. 3.3. The simplest possibility is to assume that the value of 7 at a grid 

point prevails over the control volume surrounding it. This gives the stepwise 

profile sketched in Fig. 3.3a. For this profile, the slope d7/dx is not defined 

at the control-volume faces (i.e., at w or e). A profile that does not suffer 

from this difficulty is the piecewise-linear profile (Fig. 3.30). Here, linear 

interpolation functions are used between the grid points. 

The discretization equation. If we evaluate the derivatives dT/dx in Eq. 

(3.11) from the piecewise-linear profile, the resulting equation will be 

ke(Te — Tp) _ kw(Tp- Tw) 4 Faye an +S Ax=0, (3.12) 

where S§ is the average value of S over the control volume. It is useful to cast 

the discretization equation (3.12) into the following form: 

apTp = apTr + ay Ty +b 5 (3.13) 

nas ih (8x)e E 

le i 

O i O Le O 
wW E 

Figure 3.2 Grid-point cluster for the one-dimensional problem. 
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(a) ib) 

Figuze 3.3 Two simple profile assumptions. (a) Stepwise profile; (b) piecewise-linear profile. 

where 

ke 
a FEE 3.14a ET Gx) i 

kw ieee. (3.145) 
X (6x)w 

ap=ap tay, (3.14¢) 

and b=S Ax. (3.14d) 

Comments. 

1. Equation (3.13) represents the standard form in which we shall write our 

discretization equations. The temperature Tp at the central grid point 

appears on the left side of the equation, while the neighbor-point 

temperatures and the constant b form the terms on the right side. As we 

shall see later, the number of neighbors increases for two- and three- 

dimensional situations. In general, it is convenient to think of Eq. (3.13) as 

having the form i 

apTp = 2 anm Typ tb, (3.15) 
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where the subscript nb denotes a neighbor, and the summation is to be 

taken over all the neighbors. 

2. In deriving Eq. (3.13), we have used the simplest profile assumption that 

enabled us to evaluate dT/dx. Of course, many other interpolation 

functions would have been possible. 

3. Further, it is important to understand that we need not use the same 

profile for all quantities. For example, S need not be calculated from a 

linear variation of S between the grid points, nor ke from a linear variation 

of k between kp and kg. 

4. Even for a given variable, the same profile assumption need not be used for 

all terms in the equation. For example, if Eq. (3.10) had an additional 

term involving T alone, it would have been permissible to use a stepwise 

profile for that term, instead of adhering to the piecewise-linear profile 

used for evaluating dT/dx. 

Guiding principles. The freedom of choice indicated so far gives rise to a 

variety of discretization formulations. It is true that, as the number of grid 

points is increased, all the formulations are expected to give the same 

solution. We shall, however, impose an additional requirement that will enable 

us to narrow down the number of acceptable formulations. We shall require 

that even the coarse-grid solution should always have (1) physically realistic 

behavior and (2) overall balance. 

Physical realism is easy to understand, at least in simple cases. The 

variations shown in Fig. 3.4 illustrate this concept. A realistic variation should 

have the same qualitative trend as the exact variation. In heat conduction 

without sources, no temperature can lie outside the range of temperature 

established by the boundary temperatures. When a hot solid is being cooled 

Unrealistic 

Approximate, but 

physically realistic 

Unrealistic 

Figure 3.4 Physically realistic 
and unrealistic behavior. 
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by an ambient fluid, the solid cannot acquire a temperature lower than that 

of the fluid. We shall always apply such tests to our discretization equations. 

The requirement of overall balance implies integral conservation over the 

whole calculation domain. We shall insist that the heat fluxes, mass flow rates, 

and momentum fluxes must correctly give an overall balance with appropriate 

sources and sinks—not just in the limit as the number of grid points becomes 

very large, but for any number of grid points. Our control-volume formulation 

makes this overall balance possible, but care is needed, as we shall shortly see, 

in calculating fluxes at the control-volume interfaces. 

The constraints of physical realism and overall balance will be used to 

guide our choices of profile assumptions and related practices. On the basis of 

these constraints, we shall develop some basic rules that will enable us to 

discriminate between available formulations and to invent new ones. The 

decisions that are normally governed by mathematical considerations can now 

be directed by physical reasoning. 

Treatment of the source term. Before we proceed to develop the basic 

rules, we shall give some attention to the source term S in Eq. (3.10). Often, 

the source term is a function of the dependent variable T itself, and it is then 

desirable to acknowledge this dependence in constructing the discretization 

equation. We can, however, formally account for only a linear dependence 

because, as we shall see later, the discretization equations will be solved by 

the techniques for linear algebraic equations. The procedure for “linearizing” a 

given S~T relationship will be discussed in the next chapter. Here, it is 

sufficient to express the average value S as 

S = Sc + SpTp, (3.16) 

whete So stands for the constant part of S, while Sp is the coefficient of Tp. 

(Obviously, Sp does not stand for S evaluated at point P.) 

The appearance of Tp in Eq. (3.16) reveals that, in expressing the average 

value §, we have presumed that the value Tp prevails over the control volume; 

in other words, the stepwise profile shown in Fig. 3.3a has been used. (It 

should be noted that we are free to use the stepwise profile for the source 

term while using the piecewise-linear profile for the dT/dx term.) 

With the linearized source expression, the discretization equation would 

still look like Eq. (3.13), but the coefficient definitions [Eqs. (3.14)] would 

change. The new set is 

apTp =4pTg +awTw +b, (3.17) 

where 

F ke 4. 

E (x)e” (3.182) 
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kw 
= 3.18b 

ay (5x)w š ( ) 

ap F 4p + ay — Sp Ax, (3.18c) 

and b = Sc Ax. (3.18d) 

The foregoing introductory discussion provides sufficient background to 

allow the formulation of the basic rules that our discretization equations 

should obey, to ensure physical realism and overall balance. These seemingly 

simple rules have far-reaching implications, and they will guide the develop- 

ment of methods throughout this book. 

3.4 THE FOUR BASIC RULES 

Rule 1: Consistency at control-volume faces When a face is common to 

two adjacent control volumes, the flux across it must be represented by 

the same expression in the discretization equations for the two control 

volumes. 

Discussion. Obviously, the heat flux that leaves one control volume 

through a particular face must be identical to the flux that enters the next 

control volume through the same face. Otherwise, the overall balance would 

not be satisfied. Although this requirement is easy to understand, subtle 

violations must be watched for. For the control volume shown in Fig. 3.2, we 

could have evaluated the interface heat fluxes k dT/dx from a quadratic 

profile passing through Ty, Tp, and Tg. The use of the same kind of 

formulation for the next control volume implies that the gradient dT/dx at 

the common interface is calculated from different profiles, depending on 

which control volume is being considered. The resulting inconsistency* in 

dT/dx (and hence in the heat flux) is sketched in Fig. 3.5. 

Another practice that could lead to flux inconsistency is to assume that 

the fluxes at the faces of a given control volume are all governed by the 

center-point conductivity kp. Then the heat flux at the interface e (shown in 

Fig. 3.2) will be expressed as kp (Tp — Tg)[(êx)e when the control volume 

surrounding the point P is considered, and as kp (Tp — Tg) /(5x)e when the 

equation with E as the center point is constructed. To avoid such incon- 

*It so happens that, if the interfaces are located midway between the grid points, 

the type of quadratic profile shown in Fig. 3.5 does not give any inconsistency. This is 

because the slope of a parabola at a location midway between two points is exactly equal 

to the slope of the straight line joining the two points. But this property of the parabola 

must be regarded as fortuitous, and one must, in general, refrain from changing the 

interface flux expression while going from one control volume to the next. 
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Slope from right 

Slope from left 

Figure 3.5 Flux inconsistency resulting from quadratic profile. 

sistencies, it is useful to remember that an interface flux must be considered 

in its own right, and not as belonging to a certain control volume. 

Rule 2: Positive coefficients Most situations of interest here will be such 

that the value of a dependent variable at a grid point is influenced by the 

values at neighboring grid points only through the processes of convection 

and diffusion. Then it follows that an increase in the value at one grid 

point should, with other conditions remaining unchanged, lead to an 

increase (and not a decrease) in the value at the neighboring grid point. In 

Eq. (3.13), if an increase in Tg must lead to an increase in Tp, it follows 

that the coefficients ag and ap must have the same sign. In other words, 

for the general equation (3.15), the neighbor coefficients anp and the 

center-point coefficient ap all must be of the same sign. We can, of 

course, choose to make them all positive or all negative. Let us decide to 

write our discretization equations such that the coefficients are positive; 

then Rule 2 can be stated as follows: 

All coefficients (ap arid neighbor coefficients anb) must always be 

positive. 

Comments. The coefficient definitions given in Eqs. (3.14) show that our 

illustrative discretization equation [Eq. (3.13)] does obey the positive- 

coefficient rule. However, as we shall see later, there are numerous AA 

tions that frequently violate this rule. Usually, the consequence is a physically 
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unrealistic solution. The presence of a negative neighbor coefficient can lead 

to the situation in which an increase in a boundary temperature causes the 

temperature at the adjacent grid point to decrease. We shall accept only those 

formulations that guarantee positive coefficients under all circumstances. 

Rule 3: Negative-slope linearization of the source term If we consider the 

coefficient definitions in Eqs. (3.18), it appears that, even if the neighbor 

coefficients are positive, the center-point coefficient ap can become 

negative via the Sp term. Of course, the danger can be completely avoided 

by requiring that Sp will not be positive. Thus, we formulate Rule 3 as 

follows: 

When the source term is linearized as S = Sc + SpTp, the coefficient 

Sp must always be less than or equal to zero. 

Remarks. This rule is not as arbitrary as it sounds. Most physical 

processes do have a negative-slope relationship between the source term and 

the dependent variable. Indeed, if Sp were positive, the physical situation 

could become unstable. A positive Sp implies that, as Tp increases, the source 

term increases; if an effective heat-removal mechanism is not available, this 

may, in turn, lead to an increase in Tp, and so on. Computationally, it is vital 

to keep Sp negative so that instabilities and physically unrealistic solutions do 

not arise. The source-term linearization is further discussed in the next 

chapter. It is sufficient to note here that, for computational success, the 

principle of negative Sp is essential. 

Rule 4: Sum of the neighbor coefficients Often the governing differential 

equations contain only the derivatives of the dependent variable. Then, if 

T represents the dependent variable, the functions T and T + c (where ¢ 

is an arbitrary constant) both satisfy the differential equation. This 

property of the differential equation must also be reflected by the 

discretization equation. Thus, Eq. (3.15) should remain valid even when 

Tp and all Ty,’s are increased by a constant. From this requirement, it 

follows that ap must equal the sum of the neighbor coefficients. Hence, 

the statement of Rule 4 is: 

We require 

ap = >> @nb (3.19) 

for situations where the differential equation continues to remain 

satisfied after a constant is added to the dependent variable. 

Discussion. It is easy to see that Eq. (3.13) does satisfy this rule. The rule 

implies that the center-point value Tp is a weighted average of the neighbor 
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values Tap. Unlike Eq. (3.13), the coefficients in Eq. (3.17) do not obey the 

tule. This is, however, not a violation, but a case of inapplicability of the rule. 

When the source term depends on T, both T and T+c do not satisfy the 

differential equation. Even in such cases, the rule should not be forgotten, but 

should be applied by envisaging a special case of the equation. If, for example, 

Sp is set equal to zero in Eq. (3.17), the rule becomes applicable and is 

indeed obeyed. 

When the differential equation is satisfied by both T and T+c, the 

desired temperature field T does not become multivalued or indeterminate. 

The values of T can be made determinate by appropriate boundary conditions. 

Conformity to Rule 4 ensures that, if, for example, the boundary tempera- 

tures were increased by a constant, all temperatures would increase by exactly 

that constant. 

Another way of looking at Rule 4 is this: When the source term is absent 

and the neighbor temperatures Tne are all equal, the center temperature Tp 

must become equal to them. Only a poor discretization equation would not 

predict Tp = Ta» under these circumstances. 

3.5 CLOSURE 

In this chapter, we have made certain basic decisions about the type of 

discretization method to be developed in this book. Through a simple 

example, we have been able to formulate four basic rules, which constitute 

the underlying guiding principles for all further work. The discussion has been 

given in terms of temperature T as the dependent variable. This was done 

simply for conceptual convenience. We shall continue with T in Chapter 4, 

but switch to the general variable @ from Chapter 5 onward. Of course, the 

four rules developed in this chapter are all applicable to the general variable ¢. 

The convection term in the general differential equation (2.13) requires 

special formulation. This matter is deferred to Chapter 5. The remaining three 

terms of Eq. (2.13) are dealt with in Chapter 4 in the framework of heat 

conduction. 

PROBLEMS 

3.1 Using the Taylor-series expansion around point P in Fig. 3.2, show that the 

finite-difference approximation for d? T/dx? is given by 

d’T _ 2 [2 - tu 
dx? (8x)e + X)w | Xe xy | 

3.2 For the differential equation (3.10), derive a discretization equation by the method 

of weighted residuals in the following manner: Assume k and S to be constant (for 
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convenience). Let the weighting function W be zero everywhere except between the 

points W and E in Fig. 3.2. Further, assume that the weighting function is piecewise- 

linear, with value unity at P and zero at points W and E. Multiply Eq. (3.10) by the 

weighting function, and integrate over the region from point W to point E. Use a 

piecewise-linear profile for T. Compare the resulting discretization equation with Eq. 

(3.12). (Note that the method outlined here, which is a special case of the method of 

weighted residuals, is known as the Galerkin method.) 

3.3 Consider Eq. (3.10) and assume that S is constant, but k depends on x. Further, use 

a uniform grid spacing in Fig. 3.2, so that Ay = (8x)e = (x) y. Derive the discretization 

equation by writing Eq. (3.10) as 

aT | dk dT 
dx? dx dx 

+S=0 

and using the approximations 

aT _ kp Tg + Tw ~2Tp) 
ax? (Ax)? 

with dk/dx as a given quantity. Noting that dk/dx can be positive or negative, find the 

conditions for which the coefficient aj; or ay would become negative, thus violating Rule 

2. (Note that the derivation in Section 3.3, which was based on the physical significance 

of the terms, did not lead to negative coefficients.) 

3.4 In an axisymmetrical situation, a steady one-dimensional conduction problem is 

governed by 

d 
1 (e£) +=, 
r dr 

where r is the radial coordinate. Following the procedure in Section 3.3, derive a 

discretization equation for this situation. (Multiply the differential equation by r, and 

then integrate with respect to r from ry to rg.) Interpret the coefficients in the 

discretization equation in physical terms. 

CHAPTER 

FOUR 

HEAT CONDUCTION 

4.1 OBJECTIVES OF THE CHAPTER 

In this chapter, we shall begin the task of constructing a numerical method 

for solving the general differential equation (2.13), which governs the physical 

processes of interest here. As we have seen, the equation contains four basic 

terms. Here we shall omit the convection term and concentrate on the 

remaining three terms. The construction of the method will be completed in 

Chapter 5, where the treatment of the convection term will be discussed. 

Omission of the convection term reduces the situation to a conduction- 

type problem. Heat conduction provides a convenient starting point for our 

formulation, because the physical processes are easy to understand and the 

mathematical complication is minimal. 

The objectives of this chapter, however, go far beyond presenting a 

numerical method for heat conduction alone. First, other physical processes 

are governed by very similar mathematical equations. Among these are 

potential flow, mass diffusion, flow through porous media, and some fully 

developed duct flows. The numerical techniques described in this chapter are 

directly applicable to all these processes. Electromagnetic field theory, 

diffusion models of thermal radiation, and lubrication flows are further 

examples of phenomena governed by conduction-type equations. Although we 

shall only occasionally make reference to these related processes, it is 

important to remember that the techniques developed in this chapter are 

immediately available for application in these different areas. S 

Second, this chapter accomplishes much of the preparatory work veded 

al 
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for later chapters. The procedure for the solution of the algebraic equations is 

presented here in a once-and-for-all manner. Later chapters modify the 

content of the algebraic equations, but the same solution technique continues 

to be applicable. Thus, even for the reader who is exclusively interested in 

fluid-flow calculation, an understanding of this chapter is essential; much of 

the material here (and in the next chapter) is an integral part of the fluid-flow 

calculation scheme to be presented in Chapter 6. 

To be able to see the similarities between transfer of momentum and 

transfer of heat and to regard velocity as, in some ways, analogous to 

temperature is a great conceptual help. The use of heat conduction as a 

building block in the fluid-flow calculation scheme reinforces this conceptual 

unity. 

4.2 STEADY ONE-DIMENSIONAL CONDUCTION 

4.2-1 The Basic Equations 

In the course of presenting the illustrative example in Section 3.3, which was 

used as a vehicle to explain the four basic rules, we have already derived the 

discretization equation for steady conduction in one dimension. To review the 

main ingredients, the governing differential equation is 

d aT 
—{k —]+S=0. 
dx ( a) (4.1) 

This leads to the discretization equation 

apTp = aplr + awTw +b, (4.2) 

where 

— _ke ap = EN’ (4.3a) 

kw awa, 4.3b "= By ae 
ap ag + ay — Sp Ax, (4.3) 

and b = Sç Ax. (4.3d) 

The grid points P, E, and W are shown in Fig. 3.2, where various distances are 

also indicated. The control-volume faces e and w are placed between the grid 
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point P and its corresponding neighbors. The exact locations of these faces 

can be considered to be arbitrary. Many practices for their placement are 

possible, some of which will be discussed in Section 4.6-1. For the time being, 

we shall simply regard the locations of e and w as known in relation to the 

grid points P, E, and W. The quantities Sç and Sp arise from the source-term 

linearization of the form 

S=Sco+tSpTp. (4.4) 

As to the profile assumptions, the gradient d7/dx has been evaluated from a 

piecewise-linear variation of T with x, while for the linearized source term the 
value Tp is assumed to prevail throughout the control volume. It should, of 

course, be remembered that other choices of profiles are possible and 

permissible, as long as the four basic rules are not violated. The policy here is 

to adopt rather simple profiles within the constraints of these rules and to 

introduce sophistication only where it is needed. 
Many important aspects of the one-dimensional heat-conduction problem 

still remain to be discussed. It is to these topics that we now turn. 

4.2-2 The Grid Spacing 

For the grid points shown in Fig. 3.2, it is not necessary that the distances 

(ôx)e and (5x), be equal. Indeed, the use of nonuniform grid spacing is often 

desirable, for it enables us to deploy computing power effectively. In general, 

we shall obtain an accurate solution only when the grid is sufficiently fine. 

But there is no need to employ a fine grid in regions where the dependent 

variable T changes rather slowly with x. On the other hand, a fine grid is 

required where the T ~ x variation is steep. 

A misconception seems to prevail that nonuniform grids lead to less 

accuracy than do uniform grids. There is no sound basis for such an assertion. 

The grid spacing should be directly linked to the way the dependent variable 

changes in the calculation domain. Also, there are no universal rules about 

what maximum (or minimum) ratio the adjacent grid intervals should main- 
tain. 

Since the T~x distribution is not known before the problem is solved, 

how can we design an appropriate nonuniform grid? First, one normally has 

some qualitative expectations about the solution, from which some guidance 

can be obtained. Second, preliminary coarse-grid solutions can be used to find 

the pattern of the T~x variation; then, a suitable nonuniform grid can be 

constructed. This is one of the reasons why we insist that our method should 

give physically meaningful solutions even for coarse grids. An exploratory 
coarse-grid solution would not be useful if the method gave reasonable 

solutions only for sufficiently fine grids. : 

The number of grid points needed for given accuracy and the way they 
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should be distributed in the calculation domain are matters that depend on 

the nature of the problem to be solved. Exploratory calculations using only a 

few grid points provide a convenient way of learning about the solution. After 

all, this is precisely what is commonly done in a laboratory experiment. 

Preliminary experiments or trial runs are conducted, and the resulting 

information is used to decide the number and locations of the probes to be 

installed for the final experiment. 

4.2-3 The Interface Conductivity 

In Eq. (4.3), the conductivity ke has been used to represent the value of k 

pertaining to the control-volume face e; similarly, kọ refers to the interface w. 

When the conductivity k is a function of x, we shall often know the value of 

k only at the grid points W, P, E, and so on. We then need a prescription for 

evaluating the interface conductivity, say ke, in terms of these grid-point 

values. The following discussion is, of course, not relevant to situations of 

uniform conductivity. 

Nonuniform conductivity can arise from nonhomogeneity of the material, 

as in a composite slab. Even in a homogeneous material, the temperature 

dependence of conductivity can lead to a conductivity variation in response to 

the temperature distribution. In the treatment of the general differential 

equation for @, the diffusion coefficient T will be handled in the same way as 

the conductivity k. Significant variations of I are frequently encountered, for 

example, in turbulent flow, where T may stand for the turbulent viscosity or 

turbulent conductivity. Thus, a proper formulation for nonuniform k or T is 

highly desirable. 

The most straightforward procedure for obtaining the interface con- 

ductivity ke is to assume a linear variation of k between points P and E. 

Then, 

ke = fekp + (1 — fe)ke » (4.5) 

where the interpolation factor fe is a ratio defined in terms of the distances 

shown in Fig. 4.1: 

= (êx)e+ 
fe Z E (4.6) 

If the interface e were midway between the grid points, fe would be 0.5, and 

ke would be the arithmetic mean of kp and kg. 

We shall shortly show that this simple-minded approach leads to rather 

incorrect implications in some cases and cannot accurately handle the abrupt 

changes of conductivity that may occur in composite materials. Fortunately, a 

much better alternative of comparable simplicity is available. In developing 
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x 

Figure 4.1 Distances associated with the interface e. 

this alternative, we recognize that it is not the local value of conductivity at 

the interface e that concerns us primarily. Our main objective is to obtain a 

good representation for the heat flux 4e at the interface via 

— ke(Tp — Te) | 
Ge (Sx)e (4.7) 

which has, in effect, been used in deriving the discretization equation (4.2). 

The desired expression for ke is the one that leads to a “correct” qe. 

Let us consider that the control velume surrounding the grid point P is 

filled with a material of uniform conductivity kp, and the one around £ with 

a material of conductivity kg. For the composite slab between points P and 

E, a steady one-dimensional analysis (without sources) leads to 

Mente 
‘ (5x)e_/kp + (8x)e+/ke ` (4.8) 

Combination of Eqs. (4.6)-(4.8) yields 

= 1—fe fe i 
ke = ( kp + £) ; (4.9) 

When the interface e is placed midway between P and E, we have f, = 0.5; then 

kz = 0.5(kp! + kg!) (4.10a) 

2kpkg 
or k, = P'E e kp T kg ` (4.10b) 

Equations (4.10) show that ke is the harmonic mean of kp and kg, rather 

than the arithmetic mean which Eq. (4.5) would give when fe = 0.5. 
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The use of Eq. (4.9) in the coefficient definitions (4.3) leads to the 

following expression for ag: 

_ | 6e , CDe ag = |e + oe f (4.11) 

A similar expression can be written for aw. Clearly, ag represents the 

conductance of the material between points P and £. 

The effectiveness of this formulation can be quickly seen in the following 

two limiting cases: 

1. Let kg > 0. Then, from Eq. (4.9), 

ke 70. (4.12) 

This implies that the heat flux at the face of an insulator becomes zero, as 

it should. The arithmetic-mean formulation, on the other hand, would have 

given a nonzero flux in this situation. 

2. Let kp > kg. Then 

e>. (4.13) 

This result has two implications; one is easy to understand, and the other 

is more obscure. Equation (4.13) indicates that the interface conductivity 

ke is not at all dependent on kp. This is to be expected because the 

high-conductivity material around point P would offer negligible resistance 

in comparison with the material around E. (The arithmetic-mean formula 

would have retained the effect of kp on ke.) The other implication is that 

ke is not equal to kg, but rather 1/f, times it. A little reflection will show 

the appropriateness of this. Our purpose is to get a correct value of qe via 

Eq. (4.7). The use of Eq. (4.13) yields 

— ke (Tp — Te) 4.14 de Ga (4.14) 

When kp>kg, the temperature Tp will prevail right up to the interface e, 

and the temperature drop Tp—Tg will actually take place over the 

distance (5x)e4. Thus, the correct heat flux will be as given by Eq. (4.14). 

In other words, the factor fẹ in Eq. (4.13) can be seen to compensate for 

the use of the nominal distance (ôx)e in Eq. (4.7). 

Consideration of these two limiting cases shows that the formulation can 

handle abrupt changes in the conductivity without requiring an excessively 
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fine grid in the vicinity of the change. This is not only convenient for 

conduction calculations in composite slabs, but it has other quite fascinating 

implications. These have been described in Patankar (1978) and will be 

explained in later chapters. 

The recommended interface-conductivity formula (4.9) is based on the 

steady, no-source, one-dimensional situation in which the conductivity varies 

in a stepwise fashion from one control volume to the next. Even in situations 

with nonzero sources or with continuous variation of conductivity, it performs 

much better than the arithmetic-mean formula. This is demonstrated in 

Patankar (1978) for some cases for which exact analytical solutions can be 

found. 

4.2-4 Nonlinearity 

The discretization equation (4.2) is a linear algebraic equation, and we shall 

solve the set of such equations by the methods for linear algebraic equations. 

We shall, however, frequently encounter nonlinear situations even in heat 

conduction. The conductivity k may depend on T, or the source S may be a 

nonlinear function of T. Then, the coefficients in the discretization equation 

will themselves depend on T. We shall handle such situations by iteration. This 

process involves the following steps: 

1. Start with a guess or estimate for the values of T at all grid points. 

2. From these guessed 7’s, calculate tentative values of the coefficients in the 

discretization equation. 

3. Solve the nominally linear set of algebraic equations to get new values of 

T. 

4. With these 7’s as better guesses, return to step 2 and repeat the process 

until further repetitions (called iterations) cease to produce any significant 

changes in the values of T. 

This final unchanging state is called the convergence of the iterations.” The 

converged solution is actually the correct solution of the nonlinear equations, 

although it is arrived at by the methods for solving linear equations. 

It is, however, possible that successive iterations would not ever converge 

to a solution. The values of T may steadily drift or oscillate with increasing 

amplitude. This process, which is the opposite of convergence, is called 

divergence. A good numerical method should minimize the possibilities of 

divergence. As we shall see later, adherence to our four basic rules promotes 

*sometimes, the term convergence is used for the process by which successive grid 

refinement brings the numerical solution closer to the exact solution. We shall refer to 

this aspect as the “accuracy” of the numerical solution, and reserve the word convergence 

for the convergence of iterations. 
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convergence; we shall also discuss other strategies for avoiding divergence. At 

this point, it is sufficient to note that our procedure is not limited to linear 

problems, and that any nonlinearity can, at least in principle, be handled by 

the iterative technique just outlined. 

4.2-5 Source-Term Linearization 

When the source S depends on 7, we express the dependence in a linear form 

given by Eq. (4.4). This is done because (1) our nominally linear framework 

would allow only a formally linear dependence, and (2) the incorporation of 

linear dependence is better than treating S as a constant. 

When S is a nonlinear function of T, we must linearize it, i.e., specify the 

values of So and Sp, which may themselves depend on T. During each 

iteration cycle, Sc and Sp would then be recalculated from the new values of 

T. The linearization of S should be a good representation of the S~T 

relationship. Further, the basic rule about nonpositive Sp must be obeyed. 

There are many ways of splitting a given expression for S into Sç and 

SpTp. Some of these are illustrated by the following examples. The numbers 

appearing in these examples have no particular significance. The symbol Tp is 

used to denote the guess value or the previous-iteration value of Tp. 

Example 1 Given: S = 5 — 4T. Some possible linearizations are: 

1. Sc= 5, Sp =—4. This is the most obvious form and is recommended. 

2. Sc = 5—4Tp, Sp=0. This is the approach of the lazy person who 

throws the entire S into Sç and sets Sp equal to zero. This approach, 

however, is not impracticable and is perhaps the only choice when the 

expression for S is very complicated. 

3. Sc=5+ 71Tp, Sp =—11. This proposes a steeper S~T relationship 

than the one actually given. The result will be that the convergence of 

the iterations will slow down. However, if there are other non- 

linearities in the problem, this slowdown may actually be welcome. 

Example 2 Given: S = 3 + 7T. Some possible linearizations are: 

1. Sc =3, Sp=7. In general this is not acceptable, as it makes Sp 

positive. If the problem could be solved without iteration, this 

linearization would give the correct solution, but if iteration is 

employed for some reason (such as the nonlinearity of other terms), 

the presence of a positive Sp may cause divergence. 

2. Sc=3+ 7Tp, Sp =0. This is the practice one should follow when a 

negative Sp is not naturally forthcoming. 

3. So =3at 9Tp, Sp =—2. This is an artificial creation of a negative Sp. 

It will, in general, slow down the convergence. 
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Example 3 Given: S = 4 — 5T°. Some possible linearizations are: 

I. So=4- 5Tp°?, Sp =0. This is the lazy-person approach, which fails 

to take advantage of the known dependence of S on T. 

2. Sc =4, Sp= —5Tp*. This looks like the correct linearization, but the 

given S ~T curve is steeper than this implies. 

3. Recommended method: 

* 

S=S*+ (2) (Tp — Te) = 4 — STP? — 15Tp? (Tp — Tp) . 

Sc =4+107%?, Sp =—15Tp?. 

This linearization represents the tangent to the S ~~ T curve at Tp. 

4. Sc =4+20T3?, Sp=—25Tp’. This linearization, which is steeper 

than the given S ~ T curve, would slow down convergence. 

These four possible linearizations are shown in Fig. 4.2 along with the 

actual S~T curve. On such a diagram, straight lines of positive slope 

would violate basic Rule 3. Among the negative-slope lines, the tangent to 

the given curve is usually the best choice. Steeper lines are acceptable, but 

would normally lead to slower convergence. Less steep lines are unde- 

sirable, as they fail to incorporate the given rate of fall of S with T. 

This discussion of the source-term linearization is adequate for present 

purposes. Further considerations are given in Chapter 7. 

Given curve 

S=4— 5T 

S 
Figure 4.2 The four possible 

T linearizations for Example 3. 
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4.2-6 Boundary Conditions 

Let us consider that, for the one-dimensional problem, the string of grid 

points shown in Fig. 4.3 is chosen. There is one grid point on each of the two 

boundaries. The other grid points will be called the internal points, around 

each of which is shown a control volume. A discretization equation like Eq. 

(4.2) can be written for each such control volume. If Eq. (4.2) is regarded as 

an equation for Tp, we then have the necessary equations for all the unknown 

temperatures at the internal grid points. Two of these equations, however, 

involve the boundary grid-point temperatures. It is through the treatment of 

these boundary temperatures that the given boundary conditions are intro- 

duced into the numerical solution scheme. 

Since it is not necessary to discuss the two boundary points separately, 

attention will be focused on the left-hand boundary point B, which is adjacent 

to the first internal point 7 as shown in Fig. 4.3. Typically, three kinds of 

boundary conditions are encountered in heat conduction. These are: 

1. Given boundary temperature 

2. Given boundary heat flux 

3. Boundary heat flux specified via a heat transfer coefficient and the 

temperature of the surrounding fluid 

If the boundary temperature is given (i.e., if the value of Tg is known), 

no particular difficulty arises, and no additional equations are required. When 

the boundary temperature is not given, we need to construct an additional 

equation for Tg. This is done by integrating the differential equation over the 

“half” control volume shown adjacent to the boundary in Fig. 4.3. (This 

control volume extends only on one side of the grid point B. This is why we 

refer to it as the half control volume.) An enlarged view of this control 

volume is given in Fig. 4.4. Integrating Eq. (4.1) over this control volume and 

noting that the heat flux q stands for —k dT/dx, we get 

dp Wi + (Sc + SpTpg) Ax =0 ; (4.15) 

“Half” contro! volume 

Ys 

Tec control volume 

Figure 4.3 Control volumes for the internal and boundary points. 
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Figure 4.4 Half control volume near 

the boundary. 

where the source term has been linearized in the usual fashion. The interface 

heat flux q; can be written along the lines of Eq. (4.7). The result is 

k:(Tg — Tr) qg — —=— + (Sc + SpTg) Ax=0. (6x); (Sc + SpTg) (4.16) 

Further implementation of this equation depends on what is given about 

the boundary heat flux qg. If the value of qp itself is given, the required 

equation for Tg becomes 

aplp = aTi +b 3 (4.17) 

where 

paci I (x), ’ (4.182) 

b=Sc Ax tap, (4.18b) 

G ap = ay — Sp Ax. (4.18c) 

If the heat flux qp is specified in terms of a heat transfer coefficient h 

and a surrounding-fluid temperature Ty such that* 

then the equation for Tg becomes 

aplz = aT; +b ¥ (4.20) 

where 

jaki 
I (5x); > (4.21a) 

; 4. 
It may be recalled that we used the symbol k in Chapter 2 to denote the specific 

enthalpy. However, no confusion with the heat transfer coefficient h is likely to arise. 
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b=So Ax +h; , (4.218) 

ap = ay — Sp Ax th. (4.21c) 

In this manner we are able to construct the required number of equations for 

the unknown temperatures. We shall now describe the method for solving 

them. 

4.2-7 Solution of the Linear Algebraic Equations 

The solution of the discretization equations for the one-dimensional situation 

can be obtained by the standard Gaussian-elimination method. Because of the 

particularly simple form of the equations, the elimination process turns into a 

delightfully convenient algorithm. This is sometimes called the Thomas 

algorithm or the TDMA (T7riDiagonal-Matrix Algorithm). The designation 

TDMA refers to the fact that when the matrix of the coefficients of these 

equations is written, all the nonzero coefficients align themselves along three 

diagonals of the matrix. 

For convenience in presenting the algorithm, it is necessary to use 

somewhat different nomenclature. Suppose the grid points in Fig. 4.3 were 

numbered 1, 2, 3,..., M, with points 1 and N denoting the boundary points. 

The discretization equations can be written as 

aiT; = bjTj41 + GTi tdi, (4.22) 

for i= 1, 2, 3, ..., N. Thus, the temperature 7; is related to the neighboring 

temperatures T;+ı and 7;—,. To account for the special form of the 

boundary-point equations, let us set 

c,=0 and by=0, (4.23) 

so that the temperatures Ty and Ty+, will not have any meaningful role to 

play. (When the boundary temperatures are given, these boundary-point 

equations take a rather trivial form. For example, if T, is given, we have 

a, = 1, by =0, c, =0, and d, = the given value of Ti.) 

These conditions imply that T, is known in terms of T32. The equation 

for i= 2 is a relation between 7;, T2, and T3. But, since T, can be expressed 

in terms of T, this relation reduces to a relation between T, and 73. In 

other words, T} can be expressed in terms of 73. This process of substitution 

can be continued until Ty is formally expressed in terms of Ty+1- But, 

because Ty +4 , has no meaningful existence, we actually obtain the numerical 

value of Ty ‘at this stage. This enables us to begin the “back-substitution” 

process in which Ty_, is obtained from Ty, Ty—2 from Ty_4, rane A 

from Ta, and T, from T2. This is the essence of the TDMA. 
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Suppose, in the forward-substitution process, we seek a relation 

T; = PiTj+1 + Q; (4.24) 

after we have just obtained 

Ti—1 = Piai Ti + Qi-1 (4.25) 

Substitution of Eq. (4.25) into Eq. (4.22) leads to 

aiTi = b:Ty41 + c(Pi-1T; + Qi-1) tdi, (4.26) 

which can be rearranged to look like Eq. (4.24). In other words, the 

coefficients P; and Q; then stand for 

bi Pec oes aap (4.272) 

di + Qi a (4.27b) 

These are recurrence relations, since they give P; and Q; in terms of P;_, and 

Q;—,. To start the recurrence process, we note that Eq. (4.22) for i=1 is 

almost of the form (4.24). Thus, the values of P, and Q, are given by 

by 
— and =—, zi Qı a (4.28) P, = 

[It is interesting to note that these expressions do follow from Eq. (4.27) 

after the substitution c, = 0.] 

At the other end of the P;, Q; sequence, we note that by = 0. This leads 

to Py = 0, and hence from Eq. (4.24) we obtain 

Ty = Qy. (4.29) 

Now we are in a position to start the back substitution via Eq. (4.24). 

Summary of the algorithm. 

1. Calculate P, and Q, from Eq. (4.28). 

2. Use the recurrence relations (4.27) to obtain P; and Q; for i = 2, 3 K a EE 

3. Set Ty = On. 

4. Use Eq. (4.24) for i=N—1, N—2 3, 2, 1 to obtai T ; ; REFERE AS tain Ty—1, 9, 

..., 73, Tas Tie i oe 
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The tridiagonal-matrix algorithm is a very powerful and convenient 

equation solver whenever the algebraic equations can be represented in the 

form of Eq. (4.22). Unlike general matrix methods, the TDMA requires 

computer storage and computer time proportional only to N, rather than to 

N? or N?. 

4.3 UNSTEADY ONE-DIMENSIONAL CONDUCTION 

4.3-1 The General Discretization Equation 

With reference to the general differential equation for ġ, we have now seen, at 

least in the one-dimensional context, how to handle the diffusion term and 

the source term. Here, we turn to the unsteady term and temporarily drop the 

source term, since nothing new needs to be said about it. Thus, we seek to 

solve the unsteady one-dimensional heat-conduction equation 

ar_ a [, aT 
—=—{k—]. 

Oe ar Ox ( er) nee 

Further, for convenience, we shall assume pc to be constant. (In Chapter 2, it 

was shown how the heat conduction equation could be modified to take 

account of the variable specific heat c. See Problem 2.2.) 

Since time is a one-way coordinate, we obtain the solution by marching 

in time from a given initial distribution of temperature. Thus, in a typical 

“time step” the task is this: Given the grid-point values of T at time t, find 

the values of T at time f+ At. The “old” (given) values of T at the grid 

points will be denoted by TÈ, TÈ, Tw; and the “new” (unknown) values at 

time t + At by Tp, Th, Tw- 

The discretization equation is now derived by integrating Eq. (4.30) over 

the control volume shown in Fig. 3.2 and over the time interval from f to 

t + At. Thus, 

e pt+At t+At fe 
ƏT © ð oT 

ne | f F dt dx -f i oo ( | dxdt, (4.31) 

w vt t w. 

where the order of the integrations is chosen according to the nature of the 

term. For the representation of the term dT/dt, we shall assume that the 

grid-point value of T prevails throughout the control volume. Then, 

; e t+At 

al | af dt dx = pc Ax (Tp — TP) - (4.32) 

w t 
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Following our steady-state practice for k a7/dx, we obtain 

ttAt 

pe Ax (Tp — Tp) = ke(Te — Tp) _ kw(Tp — Tw) P P i (5x)e x), dt . (4.33) 

It is at this point that we need an assumption about how Tp, Tg, and Ty 
vary with time from ¢ to t + At. Many assumptions are possible, and some of 

them can be generalized by proposing 

t+At 

Tp dt = [fT} + (1 — NTR] Ar, (4.34) 

t 

where f is a weighting factor between 0 and 1. Using similar formulas for the 

integrals of Tg and Ty, we derive from Eq. (4.33) 

Ax ke(Tr — Tp 3 — T! ak T} — 70) = eViE ) os ky (7, T 

er Vis amet | (Sx), e r) 

_ n |ke(Te —Tp) _ ky(T8- Ty 

While rearranging this, we shall drop the superscript 1, and remember that Tp 

Tr, Tw henceforth stand for the new values of T at time t + At. The r: 

sult, is 

apTp = ag [fTg + (1 —f)Te] + ay [fTw + (0 —f)Tw] 

+ [a3 —(1 —f)ag ~ (1 — fay) T$ , (4.36) 

where 

ag = ke SS ae (4.372) 

ay = kw ak (4.37b) 

o pe Ax ae ae (4.370) 

4 
ap = fag + fay + ap. (4.37d) 
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4.3-2 Explicit, Crank-Nicolson, 

and Fully Implicit Schemes 

For certain specific values of the weighting factor f, the discretization 

equation reduces to one of the well-known schemes for parabolic differential 

equations. In particular, f=0 leads to the explicit scheme, f =0.5 to the 

Crank-Nicolson scheme, and f=1 to the fully implicit scheme. We shall 

briefly discuss these schemes and finally indicate the fully implicit scheme as 

our preference. 

ae different values of f can be interpreted in terms of the Tp~t 

variations shown in Fig. 4.5. The explicit scheme essentially assumes that the 

old value TÈ prevails throughout the entire time step except at time t+ At. 

The fully implicit scheme postulates that, at time ¢, Tp suddenly drops from 

Tp to Tp and then stays at Tp over the whole of the time step; thus the 

temperature during the time step is characterized by Tp, the new value. The 

Crank-Nicolson scheme assumes a linear variation of Tp. At first sight, the 

linear variation would appear more sensible than the two other alternatives. 

Why then would we prefer the fully implicit scheme? The answer will emerge 

very shortly. 

For the explicit scheme (f = 0), Eq. (4.36) becomes 

apTp = aTe + awTw + (ap — ap m ay)Tp í (4.38) 

This means that Tp is not related to other unknowns such as Tr n An 

is explicitly obtainable in terms of the known temperatures Tp, Tg, Tw. I iie 

is why the scheme is called explicit. Any scheme with f #0 would be implicit; 

Crank-Nicolson 

Tp 

Tp 
Fully implicit 

t t+ At 

Figure 4.5 Variation of temperature with time for three different schemes. 
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that is, Tp would be linked to the unknowns Tg and Tw, and the solution of 

a set of simultaneous equations would be necessary. The convenience of the 

explicit scheme in this regard is, however, offset by a serious limitation. If we 

remember the basic rule about positive coefficients (Rule 2) and examine Eq. 

(4.38), we note that the coefficient of Tp can become negative. (We consider 

Tp as a neighbor of Tp in the time direction.) Indeed, for this coefficient to 
be positive, the time step Af would have to be small enough so that a? 

exceeds ag +aw. For uniform conductivity and Ax = (6x), =(5x),, this 

condition can be expressed as 

pe(Ax)? 
< At Fk (4.39) 

If this condition is violated, physically unrealistic results could emerge, 

because the negative coefficient implies that a higher Tp results in a lower Tp. 

Equation (4.39) is the well-known stability criterion for the explicit scheme. 

It is interesting to note that we have been able to derive this from physical 

arguments based on one of our basic rules. The troublesome feature about 

condition (4.39) is that, as we reduce Ax to improve the spatial accuracy, we 

are forced to use a much smaller At. 

The Crank-Nicolson scheme is usually described as unconditionally stable. 

An inexperienced user often interprets this to imply that a physically realistic 

solution will result no matter how large the time step, and such a user is, 

therefore, surprised to encounter oscillatory solutions. The “stability” in a 

mathematical sense simply ensures that these oscillations will eventually die 

out, but it does not guarantee physically plausible solutions. Some examples 

of unrealistic solutions given by the Crank-Nicolson scheme can be found in 

Patankar and Baliga (1978). 
In our framework, this behavior is easy to explain. For f=0.5, the 

coefficient of Tp in Eq. (4.36) becomes ap—(ag +ay)/2. For uniform 

conductivity and uniform grid spacing, this coefficient can be seen to be pc 

Ax/At —k/Ax. Again, whenever the time step is not sufficiently small, this 

coefficient could become negative, with its potential for physically unrealistic 

results. The seemingly reasonable linear profile in Fig. 4.5 is a good 

representation of the temperature-time relationship for only small time 
intervals. Over a larger interval, the intrinsically exponential decay of tempera- 

ture is akin to a steep drop in the beginning, followed by a flat tail. The 

assumptions made in the fully implicit scheme are thus closer to reality than 

the linear profile used in the Crank-Nicolson scheme, especially for large time 
steps. 

If we require that the coefficient of Tp in Eq. (4.36) must never become 
negative, the only constant value of f that ensures this is 1. (Of course, it is 
not meaningful for f to be greater than 1.) Thus, the fully implicit scheme 
(f= 1) satisfies our requirements of simplicity and physically satisfactory 
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behavior. It is for this reason that we shall adopt the fully implicit scheme in 

this book. 
oe 

It must be admitted that for small time steps the fully implicit scheme is 

not as accurate as the Crank-Nicolson scheme. Again, the reason can be seen 

from Fig. 4.5; the temperature-time curve is nearly linear for small time 

intervals. It is tempting to seek a scheme that combines the advantages of 

both schemes and shares the disadvantages of neither. Indeed, this has been 

done, and the result, called the exponential scheme, has been described by 

Patankar and Baliga (1978). That scheme, however, is somewhat complicated, 

and its inclusion in this book, in which many other themes are to be 

presented, would have made the treatment quite intricate. 

4.3-3 The Fully Implicit Discretization Equation 

Here we record the fully implicit form of Eq. (4.36). In doing so, we shall 

introduce the linearized source term, which we had temporarily dropped. The 

result is 

apTp = agTg + awly + b p (4.40) 

where 

a (4.41a) 
E öx) 

kw ; 4.41b) 
Aw = Tex) i 

pe Ax ap = a (4.41c) 

b=Sc Ax tapTp, (4.41d) 

ap = az + ay + ap — Sp Ax. (4.41e) 

It can be seen that, as Ate, this equation reduces to our steady-state 

discretization equation. 

The main principle of the fully implicit scheme is that the new value Tp 

prevails over the entire time step. Thus, if the conductivity kp depended on 

temperature, it should be iteratively recalculated from Tp, exactly as in our 

steady-state procedure. Other aspects of the steady-state procedure, such as 

boundary conditions, source-term linearization, and the TDMA, are also 

equally applicable to the unsteady situation. 

Our detailed consideration of the one-dimensional problem has now set 
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the stage for extension to two and three dimensions. The extension is 

surprisingly easy. 

4.4 TWO- AND THREE-DIMENSIONAL SITUATIONS 

4.4-1 Discretization Equation for Two Dimensions 

A portion of a two-dimensional grid is shown in Fig. 4.6. For the grid point 

P, points E and W are its x-direction neighbors, while N and S (denoting north 

and south) are the y-direction neighbors. The control volume around P is 

shown by dashed lines. Its thickness in the z direction is assumed to be unity. 

The nomenclature introduced in Fig. 3.2 for distances Ax, (6x)¢, etc. is to be 

extended to two dimensions here. The question of the actual location of the 

control-volume faces in relation to the grid points is still left open. Locating 

them exactly midway between the neighboring grid points is an obvious 

possibility, but other practices can also be employed, some of which will be 

discussed in Section 4.6-1. Here we shall derive discretization equations that 

will be applicable to any such practice. 

We have seen how to calculate the heat flux qe at the control-volume face 

between P and E. We shall assume that qe, thus obtained, prevails over the 

entire face of area Ay X 1. Heat flow rates through the other faces can be 

obtained in a similar fashion. In this manner, the differential equation 

oT _ 9a oT ð oT == — {e—)4+2 (ec 2)4+ 
“Or x ( | oy ( r) B (4:42) 

Figure 4.6 Control vdlume 

for the two-dimensional 

situation. 
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can be instantly turned into the discretization equation 

apTp = agTg + awTw + ayTy + asTs +b 3 (4.43) 

where 

a Res BY (4.442) 
E Ox)e’ 

hee 4.44b) 
aw = Oa ( 

k, Ax 
an = ; (4.44c) 

Nv O&)n 

k, Ax 
OT ear ge (4.44d) 
S O)s 

pc Ax Ay 
a> =, sear © S 5 

(4.44e) 

b = Sc Ax Ay + apTp , (4.44f) 

ap = ag + aw + ay tas + ap — Sp Ax Ay. (4.44g) 

The product Ax Ay is the volume of the control volume. 

4.4-2, Discretization Equation for Three Dimensions 

Finally, we add two more neighbors T and B (top and bottom) for the Zz 

direction to complete the three-dimensional configuration. The discretization 

equation can easily be seen to be 

apTp = agTg + awTw + anTyN + asTs + arly + aplpz +b > (4.45) 

where 

— Ke Y Az : (4.46a) 

(5x)e 

= Kw Ay Az 4 46b) 

aw = ey” ( 
ka Az Ax 
=a, (4.460) 

IN Sy) 
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k, Az Ax 
ag = =, (4.4 5 = O) my 

— ke Ax Ay ar im (4.46e) 

kp Ax Ay 
= — , 4 ap (52)p (4 6f) 

c Ax Ay Az a = —— l (4.46g) 

b =Sc Ax Ay Az + apTP , (4.46h) 

ap =ag tay tay tag tar tap +ap— Sp Ax Ay dz. (4.46i) 

At this point, it is interesting to examine the physical significance of the 

various coefficients in the discretization equation. The neighbor coefficients 

ap, Aw, AN, ..-, 4p represent the conductance between the point P and the 

corresponding neighbor. The term a}7p is the internal energy (divided by 
At) contained in the control volume at time t. The constant term b consists 
of this internal energy and the rate of heat generation in the control volume 

resulting from Sc. The center-point coefficient ap is the sum of all neighbor 

coefficients (including ap, which is the coefficient of the “time neighbor” Tp) 

and contains a contribution from the linearized source term. 

4.4-3 Solution of the Algebraic Equations 

It should be noted that, while constructing the discretization equations, we 

cast them into a linear form but did not assume that a particular method 

would be used for their solution. Therefore, any suitable solution method can 

be employed at this stage. It is useful to consider the derivation of the 

equations and their solution as two distinct operations, and there is no need 

for the choices in one to influence the other. In a computer program, the two 

Operations can be conveniently performed in separate sections, and either 

section can be independently modified when desired. 

So far, we have obtained the multidimensional discretization equations by 

a straightforward extension of the one-dimensional situation. One procedure 

that cannot so easily be extended to multiple dimensions is the tridiagonal- 

matrix algorithm (TDMA). Direct methods (i.e., those requiring no iteration) 

for solving the algebraic equations arising in two- or three-dimensional 

problems are much more complicated and require rather large amounts of 

computer storage and time. For a linear problem, which requires the solution 

of the algebraic equations only once, a direct method may be acceptable; but 
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in nonlinear problems, since the equations have to be solved repeatedly with 

updated coefficients, the use of a direct method is usually not economical. We 

shall, therefore, exclude direct methods from further consideration, except to 

say that a computer program for the direct solution of discretization 

equations in two dimensions has been published by King (1976). 

The alternative, then, is iterative methods for the solution of algebraic 

equations. These start from a guessed field of T (the dependent variable) and 

use the algebraic equations in some manner to obtain an improved field. 

Successive repetitions of the algorithm finally lead to a solution that is 

sufficiently close to the correct solution of the algebraic equations. Iterative 

methods usually require very small additional storage in the computer, and 

they are especially attractive for handling nonlinearities. In a nonlinear 

problem, it is not necessary or wise to take the solution of the algebraic 

equations to final convergence for a fixed set of coefficient values. With a 

given set of these values, a few iterations of the equation-solving algorithm are 

sufficient before the updating of the coefficients is performed. It seems that, 

in general, there should be a certain balance between the effort required to 

calculate the coefficients and that spent on solving the equations. Once the 

coefficients are calculated, we must perform sufficient iterations of the 

equation solver to extract substantial benefit from the coefficients, but it is 

unwise to spend an excessive amount of effort on solving equations that are 

based on only tentative coefficients. 

There are many iterative methods for solving algebraic equations. We shall 

describe only two methods; the first will set the background, and the second 

is recommended for use. 

The Gauss-Seidel point-by-point method The simplest of all iterative methods 

is the Gauss-Seidel method in which the values of the variable are calculated 

by visiting each grid point in a certain order. Only one set of T’s is held in 

computer storage. In the beginning, these represent the initial guess or values 

frem the previous iteration. As each grid point is visited, the corresponding 

value of T in the computer storage is altered as follows: If the discretization 

equation is written as 

apTp = > Gob Tnb + b 7 (4.47) 

where the subscript nb denotes a neighbor point, then Tp at the visited grid 

point is calculated from 

* 

Tp = Z dane Ta (4.48) 

where Tę, stands for the neighbor-point value present in the computer 

storage. For neighbors that have already been visited during the current 
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. . * , 

iteration, Tab is the freshly calculated value; for yet-to-be-visited neighbors 

Tnb is the value from the previous iteration. In any case, Ti is the latest 

a os ie neighbor-point temperature. When ali grid points have 

een visited in this manner, one iteration of the Gauss-Sei i cies ss-Seidel method is 

To illustrate the method, we shall consider two very simple examples. 

Equations: 

Tı = 04T, + 0.2, (4.49a) 

Solution: 

Iteration no. 0 1 2 3 4 5 : oo 

T, 0 02 068 0.872 0.949 0.980 --- 10 
T, O 12 1.68 1.872 1.949 1.980 --- 2.0 

It can be seen that, starting with an arbitrary guess, we have been 

able to approach the correct solution of the equations. An interesting 

feature of iterative methods is that the accuracy of the calculations may 

not be very high in the intermediate stages. Approximate calculations, and 

even errors, tend to be wiped out, since the intermediate values are ised 

simply as guesses for the next iteration. We can gai insi A ain further ins 

the following example. j j 

e 

Equations: 

T =T,-1, (4.50a) 

Ta = 2.5T, — 0.5. (4.50b) 

Solution: 

Iteration no. 0 1 2 3 4 
7 0 —i —4 —11.5 —30.25 

A 0 -—3 —10.5 —29.25 —7 6.13 
nS ee 

pete seh not look very hopeful. Here the iteration process has 
rge ; at is more surprising is that Eqs. (4.50) are simply rearrahged 

versions of Eqs. (4.49), for which we did get convergence. 
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We thus conclude that the Gauss-Seidel method does not always converge. 

Indeed, a criterion has been formulated by Scarborough (1958) that, when 

satisfied, guarantees the convergence of the Gauss-Seidel method. We shall 

state it without proof and discuss its implications. 

The Scarborough criterion. A sufficient condition for the convergence of 

the Gauss-Seidel method is 

<|! for all equations 4.5la Zianl q ( ) 

lapl <1 for at least one equation . (4.51b) 

Comments. (1) The criterion is a sufficient condition, not a necessary 

one. This means that we can, at times, violate the criterion and still obtain 

convergence. (2) Although we shall not advocate the use of the Gauss-Seidel 

method, it seems desirable that our discretization equations should satisfy the 

Scarborough criterion so that convergence is assured by at least one iterative 

method. (3) Some of our basic rules, which have been motivated by physical 

considerations, can now be seen to fulfill the demands of the Scarborough 

criterion. For example, the presence of a negative Sp leads to Z app/ap <1. 

Our requirement of positive coefficients can also be viewed in this light. If 

some of the coefficients were negative, then ap (which often equals È dnp) 

could have a magnitude less than Elano! (since È apy < Elang l), thus leading 

to a violation of the criterion. (4) When ap equals Zapp and all the 

coefficients are positive, we obtain, for all equations, Eljanpl/lapl = 1. Where, 

then, is the equation at least for which Zldppl/lap| would become less than 

unity? The answer lies in the boundary conditions. For the problem to have a 

determinate solution, the temperature must be specified for at least one 

boundary point. The discretization equation in which this point appears as 

one of the neighbors does imply Zleppl/lapl <1. This is so because Zlanpl 

should be calculated, for the purpose of using the Scarborough criterion, as 

the sum of the coefficients of only the unknown neighbors; ap, on the other 

hand, is the sum of all neighbor coefficients including the boundary-point 

coefficient. 

A major disadvantage of the otherwise attractive Gauss-Seidel method is 

that its convergence is too slow, especially when a large number of grid points 

are involved. The reason for the slowness is easy to understand; the method 

transmits the boundary-condition information at a rate of one grid interval per 

iteration. 

A line-by-line method A convenient combination of the direct method (TDMA) 

for one-dimensional situations and the Gauss-Seidel method can now be 

formed. We shall choose a grid line (say, in the y direction), assume that the 

T’s along the neighboring lines (i.e., the x- and z-direction neighbors of the 

points on the chosen line) are known from their “latest” values, and solve for 
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the T’s along the chosen line by the TDMA. We shall follow this procedure 

for all the lines in one direction and repeat the procedure, if desired, for the 

lines in the other direction(s). Although the method is equally applicable to 

two or three dimensions, we shall, for convenience, conduct the following 

discussion for two-dimensional situations. 

Discussion. (1) The line-by-line scheme can be easily visualized with 

teference to Fig. 4.7. The discretization equations for the grid points along a 

chosen line are considered. They contain the temperatures at the grid points 

(shown by crosses) along the two neighboring lines. If these temperatures are 

substituted from their latest values, the equations for the grid points (shown 

by dots) along the chosen line would look like one-dimensional equations and 

could be solved by the TDMA. This procedure is carried out for all the lines 

in the y direction and may be followed by a similar treatment for the x 

direction. (2) The convergence of the line-by-line method is faster, because the 

boundary-condition information from the ends of the line is transmitted at 

once to the interior of the domain, no matter how many grid points lie along 

the line. The rate of transmission of information in the other direction is 

similar to that of the point-by-point method. (3) By alternating the directions 

in which the TDMA traverse is employed, we can quickly bring the informa- 

tion from all boundaries to the interior. (4) Often the geometry and other 

properties of the situation result in, for example, the y-direction coefficients 

being much larger than the x-direction coefficients (see Fig. 4.8). In such a 

case, especially fast convergence is obtained when the TDMA traverse is 

employed in the y direction (the direction of larger coefficients). This is 

because the guess values substituted for the temperatures along the 

t Chosen line 

x 
1. 

Figure 4.7 Representation of the line-by-line method. 
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Figure 4.8 Situation in which the y-direction coefficients are much larger than the x- 

direction coefficients. 

neighboring lines have insignificant influence on the discretization equations. 

(5) In addition to the traverse direction, the sweep direction (ie., the 

sequence in which lines are chosen) is also important in some cases. For the 

boundary conditions shown in Fig. 4.9, a left-to-right sweep (i.e., choosing the 

left boundary of the domain as the first line and then moving successively to 

the lines to the right) would transmit the known temperature on the left 

boundary into the domain; on the other hand, since no temperatures are given 

on the right boundary, a right-to-left sweep would bring no such useful 

information. (The same consideration applies to the sequence in which points 

are visited in a point-by-point scheme.) The sweep direction is especially 

important when convection is present. Quite clearly, a sweep from upstream 

to downstream would produce much faster convergence than a sweep against 

the stream. 

Other iterative methods A commonly used line-by-line method known as ADI 

(Alternating-Direction Implicit) was introduced by Peaceman and Rachford 

(1955). Another iterative technique for solving multidimensional discretization 

equations is the Strongly /mplicit Procedure (SIP) described by Stone (1968). 

A detailed study of these methods is left to the interested reader. 

T=, 

Adiabatic 

TET 

Figure 4.9 Boundary conditions that make a left-to-right sweep more advantageous. 
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4.5 OVERRELAXATION 
AND UNDERRELAXATION 

In the iterative solution of the algebraic equations or in the overall iterative 

scheme employed for handling nonlinearity, it is often desirable to speed up 

or to slow down the changes, from iteration to iteration, in the values of the 

dependent variable. This process is called overrelaxation or underrelaxation 

depending on whether the variable changes are accelerated or slowed downs 

Overrelaxation is often used in conjunction with the Gauss-Seidel method, the 

resulting scheme being known as Successive Over-Relaxation (SOR). With the 

line-by-line method, the use of overrelaxation is less common. Underrelaxation 

is a very useful device for nonlinear problems. It is often employed to avoid 

divergence in the iterative solution of strongly nonlinear equations. 

There are many ways of introducing overrelaxation or underrelaxation. 

Some practices will be described here. We shall work with the general 

discretization equation of the form 

apTp = anb Tnb +b. (4.52) 

* $ 
Further, Tp will be taken as the value of Tp from the previous iteration. 

Use of a relaxation factor. Equation (4.52) can be written as 

È anbTnb + b Tp = nb + nb P P . (4.53) 

If we add Tẹ to the right-hand side and subtract it, we have 

í Tp =T + (eTe +2 Saol TD ra) , (4.54) 
ap 

where the contents of the parentheses represent the change in Tp produced by 

the current iteration. This change can be modified by the introduction of a 

relaxation factor a, so that 

Tr = Th + a (Ziem +? -78) , (4.55a) 
ap [ 

or lR T,= Tp = 2 anbTa +b +(1—a) “r T.: (4.55b) 

T ai first, i T be noted that, when the iterations converge, that is, Tp 
A s equal to P, Eq. (4.55a) implies that the converged values of T do 
atisfy the original equation (4.52). Any relaxation scheme, of course, must 

possess this property; the final converged solution, although obtained through 
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the use of arbitrary relaxation factors or similar devices, must still satisfy the 

original discretization equation. 

When the relaxation factor & in Eq. (4.55) is between 0 and 1, its effect 

is underrelaxation, that is, the values of Tp stay closer to Tp. For a very small 

value of a, the changes in Tp become very slow. When a is greater than 1, 

overrelaxation is produced. 

There are no general rules for choosing the best value of a. The optimum 

value depends upon a number of factors, such as the nature of the problem, 

the number of grid points, the grid spacing, and the iterative procedure used. 

Usually, a suitable value of a can be found by experience and from 

exploratory computations for the given problem. 

There is no need to maintain the same value of a during the entire 

computation. The value can be changed from iteration to iteration. Indeed, it 

is permissible, though not very convenient, to choose a different value of a 

for each grid point. 

Relaxation through inertia. Another technique of overrelaxation or under- 

relaxation is to replace the discretization equation (4.52) with 

(ap + i)Tp = È anbTab + 5 + iTp , (4.56) 

where i is the so-called inertia. For positive values of i, Eq. (4.56) has the 

effect of underrelaxation, while negative values of i produce overrelaxation. 

Again, there are no general rules for finding the optimum value of the 

inertia i; it must be determined from experience with a particular problem. 

From Eq. (4.56), we can deduce that i should be comparable to ap, and the 

greater the magnitude of i the stronger will be the effect of the relaxation. 

Sometimes, the solution of a steady-state problem is obtained through the 

use of the discretization equations for a corresponding unsteady situation. 

Then the “time steps” become the same as iterations, and the “old” value Tp 

simply represents the previous-iteration value Tp. In this sense, the term apTp 

in Eq. (4.46) acts in the same way as the term iTp in Eq. (4.56). Thus, the 

inertia i is analogous to the coefficient ap in the unsteady formulation. This 

analogy suggests one way of deciding on a reasonable value of i. On the other 

hand, the practice of solving a steady-state problem via the unsteady 

formulation can now be recognized as simply a particular kind of under- 

relaxation procedure. The smaller the time step chosen, the stronger is the 

resulting underrelaxation. Incidentally, a negative value of the time step Af 

would produce overrelaxation. 

4.6 SOME GEOMETRIC CONSIDERATIONS 

4.6-1 Location of the Control-Volume Faces 

So far, no specific information has been provided as to where the control- 

volume faces are to be located in relation to the grid points. The derivation of 

HEAT CONDUCTION 69 

the discretization equation has been conducted in general terms so that it will 

be applicable to any particular way of locating the control-volume faces 

Among the many possible practices, we shall look at two different alternatives 

and discuss their relative merits. The two practices will be called Practice A 

and Practice B. For convenience, the description will refer to a two- 

dimensional situation, although the concepts involved are applicable to - 

and three-dimensional situations as well. oe 

Practice A: faces located midway between the grid points. The most 

obvious way of constructing the control volumes is to place their faces 

midway between neighboring grid points. This is shown in Fig. 4.10, where 

the dashed lines indicate the control-volume faces. The grid is deliberatel 

pa to r highly nonuniform; one consequence is that a typical grid i 

E T S not lie at the geometric center of the control 

Practice B: grid points placed at the centers of the control volumes 

Another practice, illustrated in Fig. 4.11, is to draw the con tiGl-voliiiie 

boundaries first and then place a grid point at the geometric center of each 

control volume. In this scheme, when the control-volume sizes are non 

uniform, their faces do not lie midway between the grid points. 

Discussion. (1) It should be noted that for uniform grids (or uniform 

control-volume sizes) the two practices become identical. Therefore, a com- 

parison of the two practices is meaningful only in the context of nonuniform 

grid spacing. (2) The “midway” faces in Practice A do provide greater 

accuracy in calculating the heat flux across the face. As noted in Section 3.4 

the slope of the piecewise-linear temperature profile happens to be the amie 

as the slope of any parabolic profile evaluated midway between the grid 

points. Thus, even though a linear profile is used, the results eiei 

correspond to a less crude parabolic profile. (3) On the other hand, the fact 

that the grid point P in Fig. 4.10 may not be at the geometric center of the 

--4--- 

1 | P 4 
Figure 4.10 Locations of the 

control-volume faces for 
Practice A. 



Figure 4.11 Locations of the control-volume faces for Practice B. 

control volume represents a disadvantage. The temperature Tp then cannot be 

regarded as a good representative value for the control volume in the 

calculation of the source term, the conductivity, and similar quantities. 

Further, even in the calculation of the heat fluxes at the control-volume faces, 

Practice A is not free from objections. The point e in Fig. 4.10, for example, 

is not at the center of the control-volume face on which it lies. Then, to 

assume that the heat flux at e prevails over the entire face entails some 

inaccuracy. (4) Practice B does not have these shortcomings, since the point P 

lies, by definition, at the center of the control volume, and points such as € 

lie at the center of their respective faces (see Fig. 4.11). The faces, 

however, do not lie midway between the grid points, and therefore, unlike 

Practice A, Practice B does not benefit from the fortuitous property of the 

parabola. (5) Perhaps the decisive advantage of Practice B is the convenience it 

offers. Since the control volume turns out to be the basic unit of the 

discretization method developed so far, it is more convenient to draw the 

control-volume boundaries first and let the grid-point locations follow as 

a consequence. For a composite solid, for example, we can locate the 

control-volume faces where the discontinuity in the material properties occurs 

(see Fig. 4.12). Similarly, discontinuities in boundary conditions can be 

conveniently handled. If a part of the boundary is adiabatic and the rest 

isothermal, the control volume can be designed so as to avoid the presence of 

the discontinuity within a control-volume face; this is shown in Fig. 4.12. In 

Practice A, it is much more difficult to arrange that the control-volume faces 

fall at the desired locations, because one must first specify the positions of 

the grid points. (6) The design of the control volumes near the boundaries of 

the calculation domain requires additional consideration. As shown in Fig. 

4.13, Practice A leads to the “half” control volumes (introduced in Section 

4.2-6) around the boundary grid points. In Practice B, it is convenient to 
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Adiabatic Isothermal 

Figure 4.12 Treatment of com- 

posite material and discontinu- 

ous boundary conditions in 

Practice B. 

completely fill the calculation domain with regular control volumes and to 

place the boundary grid points on the faces of the near-boundary control 

volumes. This arrangement is shown in Fig. 4.14. A typical boundary face i is 

not located between the boundary point B and the internal point /, but 

actually passes through the boundary point. If a control volume ap ere 

thickness is imagined around point B, the location of the face i in relation to 

the grid points B and J can be seen to conform to the general pattern of 

Practice B. With such an arrangement, there is no need for the special 

discretization equation for the near-boundary control volume; the available 
boundary-condition data, such as given temperature or heat flux, can be 

directly used at the boundary face i. 

4.6-2 Other Coordinate Systems 

So far, we have formulated the discretization equations by using a grid in the 

Cartesian coordinate system. In the rest of the book, we shall continue to 

employ the same coordinate system for nearly all the treatment. This provides 

convenience of presentation and ease of understanding. However, the method 

being developed is not limited to Cartesian grids but can be ased with a grid 

in any orthogonal coordinate system. To illustrate the derivation of the 

, 4. 
Figure 4.13 Boundary control 

volumes in Practice A. 
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Figure 4.14 Boundary control 

volumes in Practice B. 

discretization equation in other coordinate systems, we shall consider a 

two-dimensional situation in polar coordinates, namely r and 6. 

The r8 counterpart of Eq. (4.42) is 

ar_1a(,aT\,1 2 (kar 
oe eet ae ee eS. 4.57 

Pe or Or ( r) mt z) Gog 

The grid and the control volume in 78 coordinates are shown in Fig. 4.15. The 

z-direction thickness of the control volume is assumed to be unity. To obtain 

the discretization equation, we multiply Eq. (4.57) by r and integrate with 

respect to r and 6 over the control volume. (This operation gives the volume 

integral, since r dr d@ represents a volume element of unit thickness.) 

Figure 4.15 Control volume in 

polar coordinates. 
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Following the same procedure as in Section 4.4-1, we obtain the discretization 

equation 

apTp =agTg + awTy + anTn + asTs +b, (4.58) 

where 

pute ke Ar 
E Te (8)e , (4.59a) 

pense ky Ar 
WRB ” (4.59b) 

_ kyty 40 
aN (rn), ’ (4.59c) 

eo kyr, 46 
S 6A (4.59d) 

a? _ pe AV 

At’ (4.59e) 

b = Sc AV + apTp > (4.59f) 

ap =ag + aw tay tas +ap—Sp AV. (4.59g) 

Here AV is the volume of the control volume; it is equal to 0.5(7, +r,) A0 

Ar. (It should be noted that AV is not necessarily equal to rp A0 Ar, unless P 

lies midway between n and s.) 

The foregoing illustration shows that the additional features introduced 

by a new coordinate system are mainly geometric. As long as the required 

lengths, areas, and volumes are properly calculated, no new principles are 

needed. Discretization equations in any orthogonal coordinate system can now 

be derived along the same lines. The requirement of orthogonality, however, is 

essential if profiles defined by just two grid points are to be used. The fact 

that the control-volume face e in Fig. 4.15 is perpendicular to the line PE 

enables us to calculate the flux across the face from Tp and Tp alone. A more 

complex discretization formula would be needed for nonorthogonal grids. 

In the remainder of the book, we shall use only Cartesian coordinates for 

all algebraic derivations. The entire treatment, however, is equally applicable 

to any orthogonal coordinate system when the obvious geometric changes are 

introduced. 

4.7 CLOSURE 

This chapter marks the first major step in the development of the numérical 

method for the general differential equation (2.13). Heat conduction presents 
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a physical situation that embodies all the ingredients of the general equation 

except convection. Thus, whereas we have nearly completed the construction 

of the method, the remaining ingredient, namely convection, does give rise to 

many interesting and important considerations. The treatment of convection is 

not as straightforward as one would at first expect, and yet a proper 

treatment is crucial for handling situations with fluid flow. The next chapter 

is devoted to the special features that convection brings into the discretization 

method. 

PROBLEMS 

4.1 For the situation shown in Fig. 4.3, if the boundary temperature Tg were given, 

explain how you would obtain the heat flux qp at the boundary, after the calculation of 

all the grid-point temperatures, (Note that an attempt to approximate dT/dx at the 

boundary is not consistent with the control-volume procedure; the half-control-volume 

equation should be used to find q B) 

4.2 When the boundary temperature Tg in Fig. 4.3 is given, we do not use the half- 

control-volume equation for obtaining the temperature field. Does this mean that we do 

not satisfy energy conservation over the whole calculation domain for the given- 

boundary-temperature condition? (See the note for Problem 4.1.) 

4.3 The boundary condition expressed by Eq. (4.19) can be thought of as the most 

general condition. It is then possible to obtain the two other types of boundary 

conditions (namely, given temperature and given heat flux) as limiting cases of this 

general condition. Explain how this can be achieved. 

4.4 Consider the differential equation 

Define a new variable n such that dn = (1/k) dx. Derive the discretization equation by 

assuming that T is linear in n in a piecewise manner. Express n in terms of x and the 

grid-point conductivities by postulating that the conductivity at a grid point prevails 

throughout the control volume surrounding it. Verify that the resulting expression for 4g 

agrees with Eq. (4.11). 

4.5 Derive the discretization equation from Eq. (4.1) for the situation in which 

S=a+bT, where a and b are constants. Use a piecewise-linear profile for T for 

calculating both dT/dx and S. Comment on the resulting discretization equation with 

reference to Rule 2. 

4.6 Repeat the derivation in Section 4.3-1 by assuming a piecewise-linear T ~ x profile 

also for the aT/at term. For f=1 (that is, the fully implicit scheme), examine the 

neighbor coefficients ag and ay with reference to Rule 2. [Have you noticed that, with 

reference to Eq. (4.40), the a7/at term behaves much like S (= Sc + SpTp) and that 

aT/at, if regarded as a part of S, would give a negative Sp as desired? } 

4.7 In a combined conduction-radiation problem the source term is given by 

S=a(Té —T*), where a and T, are constants and a is positive. Write an appropriate 

linearization for the source term. 

4.8 The source term for a dependent variable @ is given by S=A — Bild, where A and 

B are positive constants. If this term is to be linearized as Sc + Spp, comment on the 

following practices (op denotes the previous-iteration value): 
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(@) Sc = A — Biplop, Sp= 0 
(b) Sc =A, Sp= —Blgpl 
C) Sc =A + Bigplop, Sp= —2Bigpl 
@) Sc = A + 9Bioplop, Sp= —10Biop\ 
4.9 Consider a one-dimensional heat conduction situation with S = 2 and k = 1 every- 

where. If four grid points at x = 0, 1, 2, 3 are used to span the domain of length 3, write 

the four discretization equations (including the half-control-volume equations) ‘ising the 

following boundary conditions: At x = 0, the heat flux info the domain is 5; at x = 3 

the heat flux leaving the domain is 11. 

Solve the four discretization equations by: 

(a2) The TDMA 

(b) The Gauss-Seidel iteration 

(c) Setting the temperature at the first grid point equal to 100 and applying the TDMA 

to the remaining three equations 

(d) Same as (c), but solving the equations by the Gauss-Seidel method 

[Comments: With the given boundary conditions, the values of T are not uniquely 

defined—the differences between temperatures are meaningful, but their absolute values 

are not. Hence, by method (a), no solution can be obtained. The solutions obtained in 

(b) and (c) will, in general, differ by a constant. Also, the convergence in (b) will be 

faster than in (d). It is, therefore, better to let the solution seek its own level than to 

insist on a definite value at a particular grid point.] 

4.10 For the explicit scheme, Eq. (4.39) gives the stability criterion for one-dimensional 

problems, Derive the criteria for two- and three-dimensional situations from the require- 

ment that the coefficient of Tp must remain positive. 

4.11 An infinite slab of thickness 8 units has its faces maintained at a temperature of 

100. The temperature field is governed by Eq. (4.1) with k =5 and S = 50 everywhere. 

Using only a few grid points, obtain a numerical solution by the method developed ìn 

cae paar i values of T from the solution with those from the exact 

; e grid is desi i i i e pee cher according to Practice A, the agreement with the exact 

4.12 Formulate the followin i i i g problem in terms of appropriate dimensionless i : 

The governing equation is ane 

dT 
A PSSO, 

where k and S are constant. The boundary conditions are 

z aT 
x0 wk z sho (Te T), 

E dT 
ESk <k z MIM o TP 

ea ho and hy are the heat transfer coefficients, and T, and Ty, are the corresponding 

: ee temperatures. Solve the problem numerically for the case h,L/k=1 and 

re = 2, and compare the results with the exact solution. : 

1 i area number of simple fully developed flows are governed by conductionlike 

ions. For example, the fully developed flow between parallel plates obeys the 

equation il 

d du dp ` 

— |u — }]| —— =0 
dy \ dy dx * 
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where u is the velocity, » is the viscosity, and dp/dx is the constant pressure gradient. 

Noting that this equation is essentially identical to Eq. (4.1), we can use the discretiza- 

tion method developed in this chapter for calculating fully developed flows. 

(a) Compute the velocity distribution in the fully developed flow between stationary 

parallel plates, 

(b) Let one of the plates be stationary, while the other is moving with velocity 

U. Calculate the fully developed flow between the plates for various values of the 

parameter L° (dp/dx)/(uU), where L is the distance between the two plates. 

(c) Calculate the velocity field for the fully developed flow in a circular pipe. 

4.14 The thermally fully developed region in a duct is characterized by a temperature 

field that, when expressed in appropriate dimensionless form, remains unchanged with the 

streamwise distance. Calculate the fully developed temperature field and the Nusselt 

number in a fully developed flow between two parallel plates, assuming that the velocity 

profile is parabolic, one plate is adiabatic, and there is a uniform heat flux across the 

other plate. [A large variety of fully developed flow and heat transfer problems can now 

be solved by the method developed in this chapter. You may wish to verify some of the 

results presented in Sparrow and Patankar (1977).] 

4.15 Consider unsteady heat conduction in an infinite slab. One face of the slab is 

insulated, while a constant heat flux enters the slab through the other face. After the 

initial transient, the temperature profile will acquire a fixed shape, and all the 

temperatures will rise with time at the same rate. Further, this rate will be related to the 

amount of heat flux through the face. Formulate and solve the problem by the 

techniques of steady-state heat conduction. [Such “fully developed” regime in unsteady 

heat conduction is discussed more fully in Patankar (1979b).] 

4.16 Consider the one-dimensional heat conduction problem in a rod that is bent into a 

circular shape to form an endless loop. It thus has no exposed ends and no meaningful 

boundary conditions. Indeed, all grid points will be the internal grid points. The 

discretization equations will still have the form (4.22), but the conditions given by Eq. 

(4.23) will not apply. Instead, Ty+1 will be interpreted as T,, and T, as Ty. Derive a 

solution algorithm (which we shall call the circular TDMA) for such a set of equations. 

{This algorithm will be useful in applying the line-by-line method in rð coordinates, 

because the grid points forming a @-direction line may be arranged in an endless loop. 

Another application of the circular TDMA, and the details of its derivation, can be found 

in Patankar, Liu, and Sparrow (1977).] 

4.17 Consider two dependent variables f and g, which are governed by coupled equations 

of the form 

aifi = bifi+ı + Cifi—1 tdi + eigi » 

and Aigi = Bigi+i + Ci8i-1 + Dit Eifi » 

for i=1, 2, 3, ..., N. Also, c, =0, by =0, C, =0, and By = 0. Using the basic ideas 

of the TDMA, derive an algorithm for solving these equations. 

4.18 Compare Eqs. (4.56) and (4.55b) to show that the inertia i that is implicit in the 

use of a relaxation factor a is given by i = (1 — a)apia. 

4.19 A slab of thickness L has a linear temperature distribution within it from T = T, at 

x=0 to T=T, at x=L. At time t=0, the face at x= L is made adiabatic, while the 

face at x = 0 is still held at T = T,. Calculate the distribution of (T—T,)(T, — T,) as a 

function of x/L and at/L?, where a is the thermal diffusivity. Continue the computations 

until the value of (T — T,)/(T, — To) at x = L falls below 0.5. f 

4.20 Consider the steady one-dimensional conduction in a constant-area fin governed by 
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a PLi PELS 
dx ae. a TA ee 

where h is the heat transfer coefficient between the fin surface and the surrounding fluid 

at temperature Ty, A is the cross-sectional area of the fin, and P is the perimeter of the 

cross section. The boundary conditions are: At x = 0, T= T, (the base temperature), and 

at x = L, k dT/dx = 0 (insulated tip). Find the numerical solution for the dimensionless 

temperature (T— TAIT, — Tf as a function of x/L for hPL? |kA =2, and compare it 

with the exact solution. For a uniform grid, find the number of grid points needed to 

predict the heat flux at the base within 1% of the exact value. (Note that the proper 

linearization of the source term in the given equation is quite obvious. However, if you 

attempt to solve the problem iteratively by expressing the entire source term as Sc and 

setting Sp = 0, you will observe that the iterations successively produce unrealistic results 

and make the convergence difficult to attain.) 



CHAPTER 

FIVE 

CONVECTION AND DIFFUSION 

5.1 THE TASK 

So far, in the guise of heat conduction, we have seen how to formulate the 

discretization equation from the general differential equation containing the 

unsteady term, the diffusion term, and the source term. (The description in 

the last chapter in terms of temperature T and conductivity k can easily be 

recast in terms of the general variable @ and its diffusion coefficient T.) The 

only omission has been the convection term, which we shall now include. We 

have also dealt with the methods of solving the algebraic equations; as long as 

the addition of the convection term does not alter the form of the 

discretization equation, the same methods continue to apply. 

The convection is created by fluid flow. Our task in this chapter is to 

obtain a solution for ¢ in the presence of a given flow field (i.e., the velocity 

components and the density). How we know the flow field is a question we 

do not ask at this stage. It could have come from experiment, be given as an 

analytical solution, be obtained by the method described later in Chapter 6, 

or simply be guessed. The origin of the flow-field information is immaterial 

here. Having somehow acquired the flow field, we wish to calculate the 

temperature, concentration, enthalpy, or any such quantity that is represented 

by the general variable ¢. 

Although convection is the only new term introduced in this chapter, its 
formulation is not very straightforward. The convection term has an in- 

separable connection with the diffusion term, and therefore, the two terms 

79 



80 
NUMERICAL HEAT TRANSFER AND FLUID FLOW 

need to be handled as one unit. This is why the words “convection and 

diffusion” form the title of this chapter; other terms can also be present, but 

only in the background. 

It should be remembered that the word diffusion is used here in a 

generalized sense. It is not restricted only to the diffusion of a chemical 

species caused by concentration gradients. The diffusion flux due to the 

gradient of the general variable ¢ is -T ag/0x;, which, for specific meanings 

of , would represent chemical-species diffusion flux, heat flux, viscous 

stress, etc. The general differential equation (2.15) contains the term 

(/ax;) (T 39/0x;), which is designated as the diffusion term. Actually, this 

expression denotes the sum of three terms for the three coordinate directions; 

yet it is convenient to refer to them collectively as the diffusion term. The 

same is true of the convection term, which is (8/0x;) (eu;¢)- 

One feature of the convection-diffusion situation may be noted at this 

point. Since the given flow field must satisfy the continuity equation 

0p 0 
i  — )=0 . eer (pu;) ; (5.1) 

the general differential equation 

ð ð ð dp 
S + — (pu;ġ) = — aoe eS 
F (pd) + 5 A (pujo) 2x) ( 2) (5.2) 

can also be written as 

ð 0¢ ð do 
+ |, —— =Z —— —— + 4 5.3 

g ot puj Ox; Ox; (r ax; à Ga 

From this form of the equation, it follows that, for given distributions of p, 

uj, I, and S, any solution $ and its variant (@ plus a constant) would both 

satisfy Eq. (5.3). Under these circumstances, the basic rule about the sum of 

the coefficients (Rule 4) continues to apply. 

5.2 STEADY ONE-DIMENSIONAL 

CONVECTION AND DIFFUSION 

As in the last chapter, much can be learned from consideration of the simplest 

possible case. Here we shall consider a steady one-dimensional situation in 

which only the convection and diffusion terms are present. The governing 

differential equation is 

d (oud = 4. (r 
dx (nue) = dx ( 2) ‘ cD 
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where u represents the velocity in the irecti x direction. Also, the inui 

equation becomes ii 

d 
T (pu) =0 or pu = constant . (5.5) 

For deriving the discretization equation, we shall use the three-grid-point 

cluster shown in Fig. 5.1. Although the actual location of the control-volume 

faces e and w would not influence our final formulation, it is convenient to 

ei that e is located midway between P and E, and w midway between W 

and P. 

5.2-1 A Preliminary Derivation 

Integration of Eq. (5.4) over the control volume shown in Fig. 5.1 gives 

(pupje — (Ud) w = ( A) — ( at) . (5.6) 

We saw in the last chapter how to represent the term T d@/dx from a 

piecewise-linear profile for ¢. For the convection term, the same choice of 

profile would at first seem natural. The result is 

be =4(Getop) and by = 3 (opt oy). (5.7) 

1 . 

ns factor 3 arises from the assumption of the interfaces being midway; some 

ot er interpolation factors would have appeared for differently located 

intetfaces. Now, Eq. (5.6) can be written as 

1 (pue (Ge + p) — $ (04) w(e + ow) = Tele oe) a Pate - ow) 
e X)w 

(5.8) 

We pe values of Te and Tẹ are to be obtained by the prescription 

p pede in Section 4.2-3. (This applies throughout the book, although such 

references to previous sections may not be repeated.) 

Control volume 

w i Y \ Wh — w ‘ 
| | 4 

(Sx) w (5x) . 

Figure 5.1 Typical grid-point cluster for the one-dimensional problem 
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To arrange the equation more compactly, we define two new symbols F 

and D, as follows: 

F=pu, D= (5.9) 

Both have the same dimensions; F indicates the strength of the convection (or 

flow), while D is the diffusion conductance. It should be noted that, whereas 

D always remains positive, F can take either positive or negative values 

depending on the direction of the fluid flow. With the new symbols, the 

discretization equation becomes 

apop = gee t+ aww ; (5.10) 

where 

ag = De -5 , (5.11a) 

aee Bat Zx i (5.11b) 

F 
ap = De + 28 + Dy — >" 

=ag tay + (Fe— Fw). (5.110) 

Discussion. (1) Since by continuity Fe = Fw, we do get the property 

ap=apg tay. Further, it is interesting to note from Eq. (5.11c) that the 

discretization equation has this property only if the flow field satisfies 

continuity, just as Eq. (5.3) can be derived from Eq. (5.2) only if the 

continuity equation is satisfied. (2) The discretization equation (5.10) repre- 

sents the implications of the piecewise-linear profile for $. This form is also 

known as the central-difference scheme and is the natural outcome of a 

Taylor-series formulation. (3) It is instructive to consider a simple example in 

which 

De =D, = 1 and Fe. =Fy=4. 

Further, if the values of ¢g and w are given, we can obtain @p from Eq. 

(5.10). Consider two sets of values: 

(a) If ġg = 200 and w = 100, the result is ¢p = 50! 

(b) If ġg = 100 and dw = 200, the result is @p = 250! 
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Since ġp, in reality, cannot fall outside the range of 100-200 established by 

its neighbors, these results are clearly unrealistic. (4) Indeed, we could have 

anticipated these unrealistic results, because Eqs. (5.11) indicate that the 

coefficients could, at times, become negative. When |F| exceeds 2D, then, 

depending on whether F is positive or negative, there is a possiblity of ag or 

aw becoming negative. This will be a violation of one of the basic rules, with 

a possible disastrous outcome. (5) Also, the negative coefficients would imply 

that ap, which equals’ E ayy, is less than Ejanpl, which fails to satisfy the 
Scarborough criterion. Then, a point-by-point solution of the discretization 

equations may diverge. This is why all the early attempts to solve convective 

problems by the central-difference scheme were limited to low Reynolds 

numbers (i.e., to low values of F/D). (6) For the case of zero diffusion (that 

is, F =0), the scheme leads to ap = 0. Then, Eq. (5.10) becomes unsuitable 

for solution by a point-by-point method, and by most other iterative methods. 

Since the foregoing preliminary formulation has resulted in an un- 

acceptable discretization equation, we must seek better formulations. Some 

such possibilities are described in the following subsections. 

5.2-2 The Upwind Scheme 

A well-known remedy for the difficulties encountered is the upwind scheme, 

which is also known as the upwind-difference scheme, the upstream-difference 
scheme, the donor-cell method, etc. It was first put forward by Courant, 
Isaacson, and Rees (1952) and subsequently reinvented by Gentry, Martin, 
and Daly (1966), Barakat and Clark (1966), and Runchal and Wolfshtein 
(1969). 

The upwind scheme recognizes that the weak point in the preliminary 
formulation is the assumption that the convected property ġe at the interface 
is the average of ġg and @p, and it proposes a better prescription. The 
formulation of the diffusion term is left unchanged, but the convection term 
is calculated from the following assumption: 

The value of at an interface is equal to the value of @ at the grid point 
on the upwind side of the face. 

Thus, 

be = Op if F,>0, (5.12a) 

and be = $E if Fo<d. (5.126) 

The value of w can be defined similarly. r3 
The conditional statements (5.12) can be more compactly written if we 
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define a new operator.” We shall define [[A, B] to denote the greater of A 

and B. Then, the upwind scheme implies 

Fede = dpllFe, ol — ġg l- Fe. Of : (5.13) 

When Eq. (5.7) is replaced by this concept, the discretization equation 

becomes 

app = agg + awew , (5.14) 

where 

ag = De + Fe, Of . (5.152) 

aw =D, + TF w, Ol. (5.155) 

ap = De + [Fe, Ol + Dw + [-Fy, Ol 

=ap tay + (Fe — Fw). (5.150) 

Discussion. (1) It is evident from Eqs. (5.15) that no negative coefficients 

would arise. Thus, the solutions will always be physically realistic, and the 

Scarborough criterion will be satisfied. (2) What is, however, the rationale for 

the main idea underlying the upwind scheme? More insight will be obtained in 

the next subsection, but, in the meantime, a lucid physical picture of the 

upwind scheme would offer some satisfaction. The scheme is sometimes said 

to be based on the “tank-and-tube” model (Gosman, Pun, Runchal, Spalding, 

and Wolfshtein, 1969). As shown in Fig. 5.2, the control volumes can be 

thought to be stirred tanks that are- connected in series by short tubes. The 

flow through the tubes represents convection, while the conduction through 

the tank walls represents diffusion. Since the tanks are stirred, each contains a 

uniform temperature fluid. Then, it is appropriate to suppose that the fluid 

flowing in each connecting tube has the temperature that prevails in the tank 

*This new operator (A, B] is equivalent to AMAXI(A, B) in the computer 

language FORTRAN. 

Y 

z a n A YD 
Figure 5.2 Tank-and-tube model. 
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on the upstream side. Normally, the fluid in the tube would not know 

anything about the tank toward which it is heading, but would carry the full 

legacy of the tank from which it has come. This is the essence of the upwind 

scheme. 

5.2-3 The Exact Solution 

Fortunately, the governing equation (5.4) can be solved exactly if I is taken 

to be constant [pu is already constant, as given by Eq. (5.5)]. If a domain 

0<x SL is used, with the boundary conditions 

At x=0 $=@, (5.162) 

At x=L o=¢,, (5.16b) 

the solution of Eq. (5.4) is 

6-0 _ exp @x/L)—1 

P-o exp()—1 ee 
where P is a Peclet number defined by 

— PuL 
p= e (5.18) 

It can be seen that P is the ratio of the strengths of convection and diffusion. 

The nature of the exact solution (5.17) can be understood from Fig. 5.3 

where the ġ ~x variation has been plotted for different values of the Peclet 

number. In the limit of zero Peclet number, we get the pure-diffusion (or 

conduction) problem, and the @~ x variation is linear. When the flow is in 

the positive x direction (i.e., for positive values of P), the values of @ in the 

domain seem to be more influenced by the upstream value @9. For a large 

positive value of P, the value of @ remains very close to the upstream value ġo 

over much of the domain. The picture is reversed for negative values of P. 

When the fluid flows in the negative x direction, ¢, becomes the upstream 

valuc, which dominates the values of ¢ in the domain. For a large negative P 

the value of @ over most of the region is very nearly equal to ¢,. 

Implications. For constructing the discretization equation, we can now 

obtain guidance from Fig. 5.3 regarding the appropriate ġ ~x profile between 

grid points. (1) It is easy to see why our preliminary derivation failed to give 

a satisfactory formulation. The ¢~ x profile is far from being linear except 

for small values of |P|. (2) When |P] is large, the value of ọ at x = L/2, (the 

interface) is nearly equal to the value of @ at the upwind boundary. This is 

precisely the assumption made in the upwind scheme; but there it is used for 
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Figure 5.3 Exact solution for the 

one-dimensional convection-diffu- 

sion problem. 

all values of |P], not just for large values. (3) When |P] is large, do/dx is nearly 

zero at x =L/2. Thus, the diffusion is almost absent. The upwind scheme 

always calculates the diffusion term from a linear ¢~x profile and thus 

overestimates diffusion at large values of | PI. 

If the discretization equation were to be obtained directly from the exact 

solution shown in Fig. 5.3, the resulting scheme would not have any of these 

defects. Let us proceed to derive such a scheme, which we shall name the 

exponential scheme. It is based on the formulation first presented by Spalding 

(1972) and is one of the schemes proposed and employed by Raithby and 

Torrance (1974). 

5.2-4 The Exponential Scheme 

It is useful to consider a total flux J that is made up of the convection flux 

puġ and the diffusion flux ~F do/dx. Thus, 

= puġ — T 2¢ J=puġ -T =. (5.19) 

With this definition, Eq. (5.4) becomes 

di; (5.20) 
dx 

which, when integrated over the control volume shown in Fig. 5.1, gives 
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Je —Iw =0. (5.21) 

Now the exact solution (5.17) can be used as a profile between points P and 
E, with dp and $g replacing ġo and ¢,, and the distance (5x), replacing L. 

s substitution of this profile into Eq. (5.19) would give the expression for 
a 

JS p — $E =E; (è Poa ) (5.22) 

where 

p, = (Wer) _ Fe 
e T, De’ (5.23) 

and Fe and De are as defined* by Eq. (5.9). It should be noted that J, does 

not depend on the location of the interface between points P and E. Of 

course, an exact solution that obeys Eq. (5.20) must exhibit this behavior. 

Finally, substitution of Eq. (5.22) and a similar expression for J,, into Eq. 
(5.21) leads to 

op — $E by —¢ 
Fe pho ew 7 n wW p = 

(+ exp (Pe) = r) R Q exp (Py) ;) o > 

which can be cast into our standard form 

app = ager + aww , (5.25) 

where 

ee e 
exp (Fe/De) — 1 ° ^g = (5.26a) 

Fw exp (FwlDw) 
ay = —— r, 

exp (Fw/Dy) — 1 (5200) 

ap =ap taw + (Fe — Fy). (5.26c) 

* : 
e oe is to be obtained in the same manner as kg was derived in Eq. (4.9). This 
ie ea neat way in which the exact solution for constant F is boldly modified 

accept a nonuniform TF. Although there would be no objection to such a practice, the 
Prescription for Kg given by Eq. (4.9) (which was derived for the conduction situation) 
happens to be the exact formula fo i i iffusi Latta r Te even in the convection-diffusion casg (see 
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These coefficient expressions define the exponential scheme. When used 

for the steady one-dimensional problem, this scheme is guaranteed to produce 

the exact solution for any value of the Peclet number and for any number of 

grid points. Despite its highly desirable behavior, it is not widely used because 

(1) exponentials are expensive to compute, and (2) since the scheme is not 

exact for two- or three-dimensional situations, nonzero sources, etc., the extra 

expense of computing the exponentials does not seem to be justified. 

What we really need is an easy-to-compute scheme that has the qualitative 

behavior of the exponential scheme. Two such schemes will now be presented; 

the second of these is recommended for use. 

5.2-5 The Hybrid Scheme 

The hybrid scheme was developed by Spalding (1972); it also appears in the 

book by Patankar and Spalding (1970) under the name “‘high-lateral-flux 

modification.” 

To appreciate the connection between the exponential scheme and the 

hybrid scheme, we shall plot the coefficient ag, or rather its dimensionless 

form ag/De, as a function of the Peclet number P,. From Eq. (5.26) we 

deduce that 

GE _ Pe 

D,  exp(P.)—1 * (5.27) 

The variation of ag/De with Pe is shown in Fig. 5.4. For positive values of Pe, 

the grid point E is the downstream neighbor, and its influence is seen to 

decrease as P, increases. When Pe is negative, E is the upstream neighbor and 

has a large influence. Certain specific properties of the exact variation of 

ag/De (shown by the solid line in Fig. 5.4) can be seen to be: 

1. For Pe > ©, 

SE >Q: D? 0 (5.284) 

2. For Pe > —-®, 

SE + —P,; (5.28) 
e 

3. At P, = 0, the tangent is 

ag Pe fE 51- ., D. 5 (5.28c) 

| 
F 
Ei 

a 
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Figure 5.4 Variation of the coefficient apg with Peclet number. 

The three straight lines representing these limiting cases are also shown in Fig. 

5.4. They can be seen to form an envelope of, and represent a reasonable 

approximation to, the exact curve. The hybrid scheme is indeed made up of 

these three straight lines, so that 

For Pe < —2, 

a 

De (5.292) 

For —2 < P; < 2, 

: SE =] _ Pe De 2? (5.295) 

For Pe > 2, 

4E _ 

D o (5.29e) 

These expressions can be combined into a compact form by the use of the 
special symbol [| ]], which stands for the largest of th iti i a ae. g e quantities contained 

P, 
= of ; (5.3042) 

eile: F q. 

or ag = |- Fe, De — > : o] : (5.30b) 
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The significance of the hybrid scheme can be understood by observing 

that (1) it is identical with the central-difference scheme for the Peclet- 

number range —2<P, <2, and (2) outside this range it reduces to the 

upwind scheme in which the diffusion has been set equal to zero. Thus, the 

shortcomings of the upwind scheme listed at the end of Section 5.2-3 are not 

shared by the hybrid scheme. The name hybrid is indicative of a combination 

of the central-difference and upwind schemes, but it is best to consider the 

hybrid scheme as the three-line approximation to the exact curve, as shown in 

Fig. 5.4. 
The convection-diffusion discretization equation for the hybrid scheme 

can now be written as 

apop = aged + dwoy » (5.31) 

where 

3 Fe 
4g = zf De ai 7? 0 ? (5.32a) 

Fy 
ay = g Dw + 5 ; o| > (5.32b) 

ap = ag + aw + (Fe — Fw). (5.32c) 

It should be remembered that this formulation is valid for any arbitrary 

location of the interfaces between the grid points and is not limited to 

midway interfaces. 

5.2-6 The Power-Law Scheme 

It can be seen from Fig. 5.4 that the departure of the hybrid scheme from the 

exact curve is rather large at Pe = +2; also, it seems rather premature to set 

the diffusion effects equal to zero as soon as |P¢| exceeds 2. A better 

approximation to the exact curve is given by the power-law scheme, which is 

described in Patankar (1979a). Although somewhat more complicated than the 

hybrid scheme, the power-law expressions are not particularly expensive to 

compute, and they provide an extremely good representation of the 

exponential behavior. 

The power-law expressions for ag can be written as 

For Pe < —10, 

SE =-P,, (5.33a) 
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For —10 < P, <0, 

ag 

pa 0.1P.)° ~ Pe, (5.33b) 

For 0 < P, < 10, 

aE p, oo OEY (5.330) 

For P, > 10, 

aE _ 
D 0. (5.33d) 

Comparing these expressions with Eqs. (5.29), we observe that, for |P} > 10 
the power-law scheme becomes identical with the hybrid scheme. A compact 
form for Eqs. (5.33) can be written as 

§ 

ag = De fo ( a oa | + 0, —F,] . (5.34) 

The closeness of the power-law scheme to the exact exponential scheme 
can be judged from Table 5.1; the difference between the two schemes is too 

Table 5.1 Comparison of coefficient values 

given by power-law and exponential schemes 

Values of a g/De 

Pe Power-law scheme Exponential scheme 
Ses Ae en Ete ed Se 
~20 20.00 20.00 
—10 10.00 10.00 
—5 5.031 5.034 
a4 4.078 4.075 
-3 3.168 3.157 
-2 2.328 “2.313 
-1 1.590 1.582 
—0.5 1.274 1.271 
0 1 1 
0.5 0.7738 0.7707 
1 0.5905 0.5820 
2 0.3277 0.3130 
3 0.1681 0.1572 
4 0.07776 0.07463 
5 0.03125 0.03392 

10 0 0.00045 as 
20 0 4.1 X 1078 
AEA A Er E 
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small for a useful graphical comparison. As mentioned before, the power-law 

scheme is the recommended convection-diffusion formulation in this book, 

although the hybrid scheme should serve just as well in many situations. 

5.2-7 A Generalized Formulation 

To obtain further insight into the convection-diffusion formulation and to 

construct a general framework into which the various schemes considered so 

far can be fitted, we shall now explore some general properties of the 

coefficients involved. Let us consider the grid points iand i + 1 separated by 

a distance 5, as shown in Fig. 5.5. We are interested in representing the total 

flux J crossing an interface between these grid points. By use of Eq. (5.19), 

we write 

J =T aap" (5.35) 

where P is the Peclet number, pu5/I". The value of @ at the interface will be 

some weighted average of ¢; and $;+1, while the gradient d$/d(x/5) will be 

some multiple of ¢;4 1 — $; Thus, we propose 

J* = Plag; + (1 — piti] — BGi+1 — i)» (5.36) 

where a and ß are dimensionless multipliers that depend on P. In this manner, 

J* can be expressed as 

J* = Bo; — Adi+i > (5.37) 

where A and B are dimensionless coefficients that are functions of the Peclet 

number P. (The coefficient A is associated with the grid point i+ 1, which is 

Ahead of the interface, while B is connected with the grid point i, which is 

Behind the interface, as seen from the chosen coordinate direction.) 

! i+ 

x 

Figure 5.5 Total flux J between two grid points. 
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A(P) 
3 

BIP) = PeP- 
2 exp (P) — 1 

a P 

exp (P) — 1 

Figure 5.6 Variation of A and B with Peclet number. 

Properties of A and B. Two properties of the coefficients A and B are 
particularly useful in studying their dependence on the Peclet number. First 

we note that if ġ; and @;4, are equal, the diffusion flux must be zero, ade 

m then simply be the convection flux puġ;. Thus, under these conditions 

we have 

J* = Phi = Poi 4 . (5.38) 

Combination of Eqs. (5.37) and (5.38) leads* to 

B=A+P., (5.39) 

The second property of A and B is a kind of symmetry between them. If we 
reverse the coordinate axis, then P will appear as —P, and A and B will 
interchange their roles. Thus, the functions A(P) and B(P) must be related by 

ACP) = B(P) (5.402) 

or BOP) = A(P). (5.405) 

T AE of the properties. The exact variation of A and B with the 
Ee fe x ; which can be deduced from Eq. (5.22), is shown in Fig. 5.6, 
oe : pena properties can be observed. The vertical distance 
ahs an curves can be seen to be equal to P; also, the two curves 

ibit symmetry about the P= 0 location. The main implication of the two 

* 
Alternatively, from Eqs. (5.36) and ( 1 7 ely, Eqs. . 5.37), we obtain B= Pa + i 

A = Pa + 8 — P; these expressions lead to the relationship stated in Eq. (5.39) SERES 



94 NUMERICAL HEAT TRANSFER AND FLUID FLOW 

properties is that the complete A(P) and B(P) functions can be specified once 

the function A(P) for only positive values of P is known (i.e., the curve shown 

as a thick line in Fig. 5.6). This follows since, for P< 0, 

A(P) = B(P) — P from (5.39) 

= A(-P)—P from (5.40a) 

= AP) -P . (5.41) 

Thus, for all values of P, positive and negative, we can write 

A(P) = A(IPI) + J-P, O]. (5.42) 

and then, by use of Eq. (5.39), we get 

B(P) = A(IPI) + FP, Oo]. (5.43) 

Also, we shall record here, for future use, the following two relations obtained 

by combining Eqs. (5.37) and (5.39): 

J* — Po; = A(oi — bi41)> (5.44) 

J* — Poi, = Bi — biti). (5.45) 

If we now apply the flux relationship (5.37) to the interfaces e and w 

and use Eqs. (5.42) and (5.43), we obtain the following general convection- 

diffusion formulation: 

apop = abr + aww » (5.46) 

where 

ag = DeA(\Pel) + [-Fe, Ol . (5.474) 

ay = DyA(lPwl) + [Fw, ol ? (5.47b) 

ap =ag tay + (Fe — Fw). (5.47c) 

The various schemes derived so far can now be thought of as merely 

different choices of the function A(IPI). Expressions for ACIP) for the 

schemes considered so far are listed in Table 5.2 and shown graphically in Fig. 

5.7. The degree of satisfactoriness of each function can be judged by 

comparison with the exact function. 

CONVECTION AND DIFFUSION 95 

Table 5.2 The function A(|P}) for different 
schemes 

Scheme Formula for A (PI) 

Central difference 1—0.5|PI 

Upwind 1 

Hybrid 0, 1 —0.51P i] 
Power law 10, (1 —0.11P)* J 
Exponential (exact) IPi/ [exp GPD — 1] 

5.2-8 Consequences of the Various Schemes 

Before leaving the one-dimensional problem, we shall examine the values of ġp 

predicted by the various schemes for given values of ġg and dy. Let us set, 

without loss of generality, the values ġg =1 and ọwọ =0. Further, let the 

distances (6x), and (ôx), be equal; then @p will be a function of P 

(= pudx/T). The values of $p given by the different schemes for various values 

of P are shown in Fig. 5.8. (The results of the power-law scheme and the 

exact solution are too close to be plotted as separate curves.) All schemes 

except the central-difference scheme give what may be termed a physically 

realistic solution; the central-difference scheme, on the other hand, produces 

some values that lie outside the 0-1 range established by the boundary values. 

Since it is the grid Peclet number that decides the behavior of the 

numerical schemes, it is, in principle, possible to refine the grid (i.e., to use 

smaller ôx) until P is small enough (< 2) for the central-difference scheme to 

yield reasonable solutions. In most practical problems, however, this strategy 

a 

1.0 

Upwind 

A(IPI) 0.5 Exponential (exact) 

Central difference 

Figure 5.7 The function A(iP}) for various schemes. 
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\ 

1.2 A 

Central difference \ 

1.0 
~~ 

0.8 Upwind 

0.6 Exact 

{also power law) 
Exact 

dp 0.4 3 (also power law) 

0.2 a ue 

0.0 
\-Central difference 

—0.2 k 

—10 —5 (6) 5 10 

P 

Figure 5.8 Prediction of ¢p by the various schemes for a range of Peclet numbers. 

a 

requires excessively fine grids, which are usually not feasible on economic 

grounds; in any case, we could not accept such a constraint while seeking 

procedures that would give physically realistic solutions even for coarse grids. 

5.3 DISCRETIZATION EQUATION 

FOR TWO DIMENSIONS 

Now we have all the ingredients needed for writing the discretization equation 

corresponding to the general differential equation (5.2). At first, we shall 

derive only the two-dimensional form, but the same procedure would apply to 

three dimensions. 

Let us consider the control volume shown in Fig. 5.9. If we employ our 

one-dimensional practice of obtaining the total flux Je, and assume that it 

prevails over the control-volume face of area Ay X 1, we shall be in a position 

to write the complete discretization equation at once. This is given in Section 

5.3-2, to which the reader with no need for the finer details of the derivation 

may safely jump. 

5.3-1 Details of the Derivation 

One subtle detail of the derivation will now be given some attention. Even in 

the one-dimensional situation we have seen that ap turned out to be ag + ay 

only when the continuity equation was satisfied. Thus, our basic rule about 

the sum of the neighbor coefficients (Rule 4) can be satisfied only when we 
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involve the continuity equation in the derivation. This practice is illustrated in 

the following. 

The two-dimensional form of Eq. (5.2) can be written as 

ð ðJ ðJ 2 (ogy be eae = at (pġ) Ox + ay S, (5.48) 

where J, and Jy are the total (convection plus diffusion) fluxes defined by 

= _ p 9¢ 
a a es (5.49a) 

and = _ p 06 
Jy = pug -T ay? (5.49b) 

where u and v denote the velocity components in the x and y directions. The 

integration of Eq. (5.48) over the control volume shown in Fig. 5.9 would 

give 

(Ppýp — ppop) Ax Ay 
Kr +Je—-Jy tJ, —J,= (Sc + Spop) Ax Ay, (5.50) 

where the source term has been linearized in the usual manner and, for the 

unsteady term, pp and @p are assumed to prevail over the whole control 

volume. The “old” values (i.e., the values at the beginning of the time step) 

x 
4. 

Figure 5.9 Control volume for the two-dimensional situation. 
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are denoted by pp and ép. In conformity with the fully implicit practice, all 

other values (i.e., those without a superscript) are to be regarded as the “new 

values. The quantities Je, Jw, Jn, and Jy are the integrated total fluxes over 

the control-volume faces; that is, Je stands for fJ, dy over the interface e, 

and so on. 

In a similar manner, we can integrate the continuity equation (5.1) over 

the control volume and obtain 

r= 08) BE AY 4 By + Fy Fe= 0, (5.51) 

where Fe, Fy, Fn, and Fs are the mass flow rates through the faces of the 

control volume. If pu at point e is taken to prevail over the whole interface e, 

we can write 

Fe = (pte Ay. (5.52a) 

Similarly, 
x 

Fy = (pu)w AY, (5.25b) 

Fy = (PV)n AX, (5.52c) 

F; = (pv), Ax. (5.52d) 

If we now multiply Eq. (5.51) by ¢p and substract it from Eq. (5.50), we 

obtain 

op- 69) SERED + Ue — Fete) — Uw Ewe) + On — Fb) 

— (J; — Fyp) = (Sc + Spdp) Ax Ay. (5.53) 

This manipulation of Eqs. (5.51) and (5.50) to obtain Eq. (5.53) is the 

discretization analogue of the combination of Eqs. (5.1) and (5.2) to derive 

Eq. (5.3). An alternative would have been to start the derivation of the. 

discretization equation from Eq. (5.3); but this alternative is not as con- 

venient. 

The assumption of uniformity over a control-volume face enables us to 

employ our one-dimensional practices for the two-dimensional situation. At 

this point, we récall that Eqs. (5.44) and (5.45) provided a way of expressing 

terms such as Je —F 6p and Jy — Fyép. We use this here in the following 

manner: 

| 
= 

i 
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Je — Fedp = ag(op — br), (5.54a) 

Jw — Fwop = aw(ow — op), (5.54b) 

where 

ag = D-A(|Pel) + [-Fe, O] , (5.552) 

aw = D,A(IP,|) + [Fy, OD . (5.55b) 

Here De and Dw, like their counterparts Fẹ and Fw, contain the area Ay of 

the faces e and w [see Eqs. (5.58) in Section 5.3-2]. With similar expressions 

for J, — FnỌp and J, — F,@p, we are in a position to write the final form of 

the discretization equation. Because of the nature of the expressions in Eqs. 

(5.54), the rule about the sum of the neighbor coefficients is readily satisfied. 

When the given velocity and density fields do satisfy the continuity 

discretization equation, the foregoing derivation and a derivation based on Eq. 

(5.50) alone will yield identical discretization equations. However, when the 

given flow field does not satisfy the continuity equation, the two formulations 

give different equations and lead to different solutions. We prefer the 

formulation that satisfies our basic rule, for the reasons given in Chapter 3. 

How could we encounter flow fields that do not satisfy continuity? The 

possibility arises because often the flow field is not really given but is 

iteratively calculated, just as the temperature-dependent conductivity is up- 

dated in a conduction problem. Before the final convergence is attained, the 

imperfect flow field at intermediate stages of iteration may not satisfy the 

continuity equation. It is for this reason that we have taken special care to 

satisfy Rule 4. 

5.3-2 The Final Discretization Equation 

The two-dimensional discretization equation can now be written as 

apop = agbr + awby + avon tass +b, (5.56) 

where 

ag = DA(\Pel) + [—Fe, O] , (5.57a) 

ay = DyA(IPyl) + [Fy OJ , (5.57b) 

an = DpA(IPyl) + [Fn O] , (5.570) 

as = D;,A(IP;) + IFs, Ol , (5.57d) 
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0 
o _ pp Ax Ay 

= ot, 57 
ap At (5 5 e) 

b = So Ax Ay + apep , (5.57f) 

ap = ag + aw + ay + ag + ap — Sp Ax Ay. (5.578) 

Here op and pp refer to the known values at time ¢, while all other values 

(op, dE; Ow. On, Os, and so on) are the unknown values at time ¢ + At. The 

flow rates Fe, Fy, Fn, and F, have been defined in Eqs. (5.52). The 

corresponding conductances are defined by 

De = ie , (5.58a) 

w= aS , (5.58b) 

Dy = oe ; (5.58c) 

D, = ay f (5.58d) 

and the Peclet numbers by 

P= Ze Py = pM P= Past. (5.59) 

The function A(IPI) can be selected from Table 5.2 for the desired scheme. 

The power-law scheme is recommended, for which 

AQP) = fo, d — O.1/P)5] . (5.60) 

It can be appreciated that even at this stage the physical significance of 

the various coefficients in Eq. (5.56) is easy to understand. The neighbor 

coefficients ag, aw, an, and ag represent the convection and diffusion 

influence at the four faces of the control volume, in terms of the flow rate F 

and the conductance D. The term app is the known ¢ content of the control 

volume (at time £) divided by the time step. The remaining terms can be 

similarly interpreted. 

CONVECTION AND DIFFUSION 101 

5.4 DISCRETIZATION EQUATION 
FOR THREE DIMENSIONS 

At last, we have arrived at our destination. We set out to write a discretization 
Aca based on the general differential equation (5.2). Now, here it is in 
ree dimensions (with T and B representing the “top” and “bottom” 

neighbors in the z direction): 

app = apd +awġw + anon tass +arọr tagg +b, (5.61) 

where 

ag = D-A(|Pol) + [—-Fe, O} , (5.624) 

aw = D„A(IP„ D + [Fy Ol, (5.62b) 

an = D,A(IPyl) + [-F,, Ol , (5.62c) 

as = D;A(IP;) + [F,, O] , (5.62d) 

ar = D,A(IP;l) + [-F;, OF , (5.62e) 

ag = D,A(|Pol) + [F,, O] , (5.62f) 

a = pp Ax Ay Az ae S (5.622) 

- b= Sç Ax Ay Az + aboh, (5.62h) 

ap = ag + ay + ay + as +ar + ag +ap —Sp Ax Ay Az. (5.62) 

The flow rates and conductances are defined as 

Fe = (pu). Ay Az De = eaa ; (5.63a) 

Fy = (pu)„ Ay Az Dad “oe (5.630) 

Fn = (pv), Az Ax D, = roa 5 (5.63c) 

F, = (pv), Az Ax pees ; a 
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A 
F; = (pw); Ax Ay p= Ta i (5.636) 

t 

T, Ax A 

The Peclet number P is to be taken as the ratio of F and D; thus, Pe = F,/De, 

and so on. The function A(IPI) is listed in Table 5.2 for various schemes. The 

power-law formulation is 

ACIP) = T0, G — O.1/PI)*] - (5.64) 

5.5 A ONE-WAY SPACE COORDINATE 

In Chapter 2 we noted that coordinates can be classified as one-way and 

two-way, and that the identification of a one-way coordinate offers some 

computational advantages. Time is a one-way coordinate, and we have used it 

as such in formulating a marching procedure in time. The convection-diffusion 

formulation reveals that a space coordinate can also become one-way. 

5.5-1 What Makes a Space Coordinate One-Way 

We have seen from Fig. 5.4 or 5.6 that the coefficient of a downstream 

neighbor becomes small when the Peclet number is large. When the Peclet 

number exceeds 10, the power-law scheme will set the downstream-neighbor 

coefficient equal to zero. (The hybrid scheme does this for a Peclet number 

greater than 2.) Suppose that, in the two-dimensional situation shown in Fig. 

5.10, there is a high flow rate in the positive x direction. Then, for all the 

grid points P along a y-direction line, the coefficients ag will be zero. In other 

words, dp will be dependent on ¢y, on; and ¢g, but not on ¢g. Thus, the x 

coordinate will become a one-way coordinate since the @ value at any point 

will be uninfluenced by any of the downstream values. A marching solution 

procedure would then be possible in the x direction. 

Even when a space coordinate is not one-way over the whole calculation 

domain, its local one-way behavior is often useful in formulating the boundary 

conditions. This is discussed next. 

5.5-2 The Outflow Boundary Condition 

We described the treatment of the boundary conditions in some detail in 

Chapter 4. It has been tacitly assumed that the same treatment applies to the 

convection-diffusion problem. However, at an “outflow” boundary, i.e., where 

the fluid leaves the calculation domain, one normally knows neither the value 
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x 

Figure 5.10 Situation with a one-way space coordinate. 

of ¢ nor its flux. At the outflow boundary shown in Fig. 5.11, for example 

one may not know the temperature or the heat flux. How can WE then solve 

the problem? The answer is surprisingly simple: No boundary-condition 

information is needed at an outflow boundary. Consider the grid shown in the 

inset of Fig. 5.11. For all grid points P next to the outflow boundary, the 

coefficient ag will be zero if the Peclet number is sufficiently large Thus the 

coefficients multiplying the boundary values will all be zero and hence no 

boundary values will be needed. In other words, the region neat the outflow 

boundary exhibits, for large Peclet numbers, local one-way behavior; since the 
a 
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+ 
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Figure 5.11 Example of the outflow boundary. 
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boundary points are downstream of the calculation domain, they do not 

i e solution. 

oe a = that the above argument is based on the Peclet number being 

sufficiently large. But, in the absence of any other boundary-condition 

information, we can always assume the diffusion coefficient T at an outflow 

boundary to be small and thus work with a large Peclet number. An 

assumption such as this, which is a slight distortion of reality, is sae we 

must resort to if we are to get meaningful solutions in the absence o any 

further information about the outflow boundary. The resulting inaccuracy, i 

there is any at all, is the price we pay for the freedom to isolate the 

calculation domain from the universe that lies downstream of the outflow 

baa neglect of the diffusion at an outflow boundary appears, for ae 

reason, to be serious, then we should conclude that the analyst has place 

the outflow boundary at an inappropriate location. A repositioning of the 

boundary would normally make the outflow treatment acceptable. A partic- 

ularly bad choice of an outflow-boundary location is the one in which there is ie 

“inflow” over a part of it. An example of this is shown in Fig. 5.12. For such a 

bad choice of the boundary, no meaningful solution can be obtained. 7 

This may be a convenient place to review the boundary-condition 

practices for convection-diffusion problems. Whenever there is no fluid flow 

across the boundary of the calculation domain, the boundary flux is purely a 

diffusion flux, and the practices described in Chapter 4 apply. For those parts 

of the boundary where the fluid flows into the domain, usually the values Be 

@ are known. (The problem is not properly specified if we do not know the 

value of @ that a fluid stream brings with it.) The parts of the boundary 

where the fluid leaves the calculation domain form the outflow boundary, 

which we have already discussed. 

Figure 5.12 Good and bad choices of the location of the outflow boundary. 
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5.6 FALSE DIFFUSION 

In this section, we shall discuss a topic that has caused considerable 

controversy, confusion, and misunderstanding among the practitioners of 

numerical analysis. There is something called “false diffusion,” which is quite 

commonly misinterpreted, but which, in its proper meaning, represents a 

major weak point of most convection-diffusion formulations. 

5.6-1 The Common View of False Diffusion 

It is very common to encounter, in the literature, statements such as (1) the 

central-difference scheme has second-order accuracy, while the upwind scheme 

is only first-order accurate; or (2) the upwind scheme causes severe false 

diffusion. The implication is that the central-difference scheme is better than 

the upwind scheme. 

It is true that from a Taylor-series expansion one can show that the 

central-difference scheme has a truncation error of the order of (Ax)?, while 

the upwind scheme has an error of the order of (Ax). However, since the 

@~x variation arising in the convection-diffusion problem is exponential, a 

truncated Taylor series ceases to be a good representation of it for anything 

but extremely small values of Ax (or, rather, of the corresponding Peclet 

number). At larger values of Ax, which is all one can afford in most practical 

problems, the Taylor-series analysis is misleading; there, as we have seen, it is 

the upwind scheme that gives more reasonable results than the central- 

difference scheme. 

If we compare the coefficients for the central-difference and upwind 

schemes [Eqs. (5.11) and (5.15)], it can be shown that the upwind scheme is 

equivalent to replacing I in the central-difference scheme with I + pudx/2. In 

other words, the upwind scheme seems to augment the true diffusion 

coefficient I. by a fictitious (and hence false) diffusion coefficient pudx/2. 
This introduction of an artificial diffusion coefficient is then considered to be 

inaccurate, a wrong representation of reality, and hence bad. Again, the 

trouble in the argument lies in assuming the central-difference scheme as 

accurate and standard (or the underlying Taylor-series expansion as reliable) 

and then viewing the upwind scheme from this frame of reference. In this 

manner, one would discover some false diffusion even in the exponential 

scheme, which is the exact solution itself. On the other hand, the theory 

presented in this chapter leads to the conclusion that the so-called false 

diffusion coefficient pu5x/2 is indeed a desirable addition at large Peclet 

numbers, for it actually tends to correct the wrong implications that would 
otherwise follow from the central-difference scheme. 

There is no doubt that, for very small Peclet numbers, the central- 
difference scheme is more accurate than the upwind scheme. This has already 
been shown in a number of diagrams; and our favored schemes such as the 
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exponential, the hybrid, and the power-law scheme indeed conform to the 

central-difference scheme at very low Peclet numbers. In any case, the 

question of false diffusion is never serious at low Peclet numbers, because 

then the real diffusion is quite large by comparison. It is for large Peclet 

numbers that the matter of false diffusion attains importance. There the 

central-difference scheme has little to offer, and all the other schemes that we 

have considered show almost identical behavior. It is for this reason that our 

remaining discussion will concentrate on very large Peclet numbers and on 

the upwind scheme; however, the conclusions will be equally applicable to the 

exponential, hybrid, and power-law schemes. 

5.6-2 The Proper View of False Diffusion 

Having seen that the common view of false diffusion is indeed misleading, we 

now turn to what can be truly described as false diffusion. The first thing to 

recognize is that false diffusion is a multidimensional phenomenon; it has 

absolutely no counterpart in steady one-dimensional situations. (Unsteady 

one-dimensional situations do suffer from a kind of false diffusion; we shall, 

however, confine our attention to steady situations.) 

To visualize what is correctly meant by false diffusion, let us consider the 

situation shown in Fig. 5.13. Two parallel streams of equal velocity but 

unequal temperatures come in contact. If the diffusion coefficient P is 

nonzero, a mixing layer will form in which the temperature gradually changes 

from the higher value to the lower one, and the cross-stream width of this 

layer will grow in the downstream direction. If, on the other hand, the 

diffusion coefficient T were zero, no mixing layer would form and the 

temperature discontinuity would persist in the streamwise direction. The best 

situation for observing false diffusion is the one in which the real diffusion is 

set to zero. If the numerical solution for the T =0 case produces a smeared 

temperature profile (which is characteristic of a nonzero I’), we can conclude 

that the numerical scheme entails false diffusion. 
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Figure 5.13 Temperature distributions in the presence and absence of diffusion. (a) T # 0; 

(6) r=0. 
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Figure 5.14 Situation with flow along the x direction. 

For T = 0, the central-difference scheme would lead to ap = 0. Therefore 

the usual iterative methods for solving the algebraic equations cannot be used, 

If an attempt is made to solve the equations by a direct method, then either a 

unique solution is not found or the solutions turn out to be highly unrealistic. 

Implications of the upwind scheme. We shall now try to solve the 

problem shown in Fig. 5.13b by the upwind scheme for two orientations of 
the grid. 

, 1. Uniform flow in the x direction. Let us consider the situation shown 

in Fig. 5.14. The flow is aligned in the x direction, and the left-hand 

boundary has known temperatures with a sharp discontinuity. Since I is zero 

and -there is no flow in the y direction, the coefficients ay and ag will be 

zero. The coefficient ag of the downstream neighbor will also be zero. Thus 

ap must be equal to aw, and this leads to i 

op biw (5.65) 

As a result, the given upstream value on each horizontal line will become 

established at all points on that line. The temperature discontinuity in the 

upstream profile will then be preserved. No false diffusion is, therefore 
encountered here. i l 

2. Uniform flow at 45° to the grid lines. The situation changes greatly 

when the same problem is solved on a grid in which the grid lines are inclined 
at 45 to the flow direction. Let us, for convenience, use a uniform grid with 
Ax = Ay. The flow velocities in the x and y directions are equal. The result is 
that the coefficients of the upstream neighbors, ay and ag, become ma 
while those of the downstream neighbors, ag and ay, turn out to be zero 
Thus, we have 
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op = 0.5 ow + 0.5 os . (5.66) 

For the grid shown in Fig. 5.15, the temperature discontinuity is represented 

by setting the left-boundary temperatures“ equal to 100, and the bottom- 

boundary temperatures equal to zero. The resulting solution at the interior 

points is written adjacent to each grid point. If there were no false diffusion, 

we would have obtained a value of 100 above the diagonal through the lower 

left corner, and a value of zero below the diagonal. On the other hand, the 

actual solution obtained does represent a smeared temperature profile, much 

like the one in Fig. 5.13a. 

Remarks. (1) The false diffusion occurs when the flow is oblique to the 

grid lines and when there is a nonzero gradient of the dependent variable in 

the direction normal to the flow. (2) An approximate expression for the false 

diffusion coefficient for a two-dimensional situation has been given by de 

Vahl Davis and Mallinson (1972); it is 

pU Ax Ay sin 20 
Pase = 

false  4(Ay sin? 0 + Ax cos? 8) ee? 

where U is the resultant velocity, and @ is the angle (between O and 90°) 

made by the velocity vector with the x direction. It is easy to see from this 

equation that no false diffusion is present when the resultant flow is along 

one of the sets of grid lines; on the other hand, the false diffusion is most 

serious when the flow direction makes an angle of 45° with the grid lines. (3) 

The amount of false diffusion can be reduced by using smaller Ax and Ay 

and, whenever possible, by orienting the grid such that the grid lines more or 

less align with the flow direction. (4) Since real diffusion is present in many 

problems, it is then sufficient to make the false diffusion small in comparison 

with the real diffusion. (5) The use of the central-difference scheme is no 

remedy for false diffusion. As mentioned earlier, the central-difference scheme 

gives highly unrealistic solutions when large Peclet numbers are involved. (6) 

The basic cause of false diffusion is the practice of treating the flow across 

each control-volume face as locally one-dimensional. For the situation shown 

in the inset of Fig. 5.15, the value of ¢ convected by the oblique flow to the 

grid point P actually comes from the corner grid point SW. However, this 

convection is represented as the effect of two separate streams coming from 

the grid points W and S. (7) Schemes that would give less false diffusion 

should take account of the multidimensional nature of the flow. It would also 

"lt may appear that the temperatures along the left and bottom boundaries of the 

grid in Fig. 5.15 are not really known from the problem specification of Fig. 5.13b. 

However, once the exact solution for a problem is known, any domain over which the 

exact solution is valid can be chosen, and the boundary values can be prescribed from the 

exact solution. This method of constructing test problems that have known exact 

solutions has been used by Runchal (1972). 
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Figure 5.15 Situation with flow at 45° to the grid lines. 

be necessary to involve more neighbors in the discretization equation. 

Although a few such schemes have been worked out [for example, Raithby 

a 976b)] and have shown an impressive reduction in false diffusion, they are 

significantly more complicated and so far insufficiently tested. For these 

reasons, we shall not discuss them here. (8) A more detailed discussion of 

false diffusion has been given by Raithby (1976a). 

5.7 CLOSURE 

In this chapter, we have completed the construction of the general discretiza- 

tion equation for the dependent variable ¢. The convection term was the only 

addition that we made here, but it led to a number of interesting considera- 

tions. Our formulation ensures physically realistic behavior and thus holds the 

key to successful computation in the presence of fluid flow. The flow field 

itself, of course, must also be calculated in most cases. It is to this matter that 

we turn our attention in the next chapter. 

PROBLEMS . 

5.1 In a steady two-dimensional situation, the variable ¢ is governed by Az 

div (pug) = div (T grad ¢) + a — be, 
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Figure 5.16 Boundary conditions for 

x Problem 5.1. 

where p=1, P=1, a=10, and b=2. The flow field is such that u=1 and v=4 

everywhere. For the uniform grid shown in Fig. 5.16, Ax = Ay = 1. The values of ¢ are 

given for the four boundaries. Adopting the control-volume design according to Practice 

A in Section 4.6-1, calculate the values of ¢,,¢,,@3, and @, by use of: 

(a) The central-difference scheme 

(b) The upwind scheme 

(c) The hybrid scheme 

(d) The power-law scheme 

5.2 Obtain the exact solution of the equation 

d do 
A (nwo —r $) =f, 

where pu, T, and S are all constant; the boundary conditions are ¢ =, at x = 0, and 

o=oz at x =L. Use the exponential scheme to obtain a numerical solution of the 

problem for various values of puL/v and (SL/DL —¢.)- Do you get perfect 

agreement with the exact solution? Why? 

5.3 A parallel-flow heat exchanger is governed by 

dT, UA dT, _ UA 
Mhh e a (Te — Th) and Mele ae ate ee (Ta ~ Te) ; 

where m, c, and T stand for the mass flow rate, the specific heat, and the temperature, 

respectively; the subscripts h and ¢ denote the hot and cold fluids, respectively; U is the 

overall heat transfer coefficient between the two fluids; A is the total heat transfer area; 

and L is the length of the heat exchanger. The inlet temperatures Thin and Tein are 

given. Obtain a numerical solution for the dimensionless temperatures (Th — Tc,in)/4T 

and (T¢—Tein/AT as functions of x/L for the conditions mypcy =m Ce and UA 

mpcn = 1. The temperature difference AT equals Th,in— Tc,in Compare the numerical 

results with the exact solution. (Although the two coupled equations can be handled 

iteratively by sequential solution for Tp and Te, a direct simultaneous solution is often 

advantageous for such a case. This can be achieved by use of the algorithm for two 

coupled variables, which was outlined in Problem 4.17.) 

5.4 Consider the one-dimensional distribution of a variable @ governed by convection and 

diffusion. The flow field is created by the flow in a porous-walied duct; my denotes the 

x-direction mass flow rate along the duct at any location x, and my, is the rate of mass 
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leakage through the porous walls per unit length of the duct. Obviously, dm,/dx =M. 

The variable ġ is governed by 

2 

2 om o) +m apa ee ax x LOL ga = 9» 

where A is the duct cross section. When my is positive (i.e., fluid is leaking out), dz, is to 

be taken as @ within the duct; when mz is negative (i.e., fluid is leaking into the duct), 

gz is to be taken as ¢,, which is the value of @ in the ambient outside the duct. For a 

duct length of /, the boundary values are ¢=9, at x =0 and ¢=@, at x =/. Assume 

my, and TA to be constant. Use the central-difference and power-law schemes to find the 
dimensionless distribution of @ for the following two cases: 

(2) At x =0, m,l/TA = 40; atx =l, my = 0 
(b) At x =0, my = 0; at x = l, m,l/TA = 40. 

5.5 Write Eq. (5.4) by replacing x with n, where n is defined as 

Hence show that, just as Eq. (5.17) is the solution of Eq. (5.4) for the case of uniform 

T, the solution for nonuniform F is given by 

$— > _ exp (oun) —1 

OL —% exp (punz) — 1” 

where np is the value of n at x =Z. Note that puny is the Peclet number. If the 

derivation on these lines is continued, we get Eq. (5.22), where Pe must be defined as 

Pe =(pu)e(Sn)e. Assuming that a grid-point value of r prevails throughout the control 

volume surrounding it, we can express (Sn)e in terms of the I’s and the distance 

increments (shown in Fig. 4.1). Hence, we have 

- 
(x)e— ie (6X)e4. 

Pe = (pu)e T 
E 



CHAPTER 

SIX 

CALCULATION OF THE FLOW FIELD 

6.1 NEED FOR A SPECIAL PROCEDURE 

6.1-1 The Main Difficulty 

In Chapter 5, we formulated the procedure for solving the general differential 

equation for @ in the presence of a given flow field. However, except in some 

very special circumstances, it is not possible to specify the flow field; rather, 

we-must calculate the local velocity components and the density field from 

the appropriate governing equations. The velocity components are governed by 

the momentum equations, which are particular cases of the general differential 

equation for @ (with ¢=u, T=, and so on). Thus, we are tempted to 

conclude that we already have developed the method for solving the momen- 

tum equations, thereby getting the velocity field. Where, then, is the 
difficulty? 

If the nonlinearity of the momentum equations appears to be a difficulty, 

we only have to remind ourselves that, while treating heat conduction, we saw 

how to handle nonlinearity by iteration. In particular, the convection co- 

efficient pu being a function of the dependent variable u of the momentum 

equation is no different from the conductivity k being a function of the 

temperature T. Starting with a guessed velocity field, we could iteratively 

solve the momentum equations to arrive at the converged solution for the 
velocity components. ! 

The real difficulty in the calculation of the velocity field lies in ‘the 

unknown pressure field. The pressure gradient forms a part of the source term 
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Contro! volume 

Figure 6.1 Three-grid-point cluster. 

This means that the momentum equation will contain the pressure difference 

between two alternate grid points, and not between adjacent ones. The 

implication is that the pressure is, in effect, taken from a coarser grid than the 

one actually employed. This would tend to diminish the accuracy of the 

solution. But, there is another implication that is far more serious. It can be 

best seen from Fig. 6.2, where a pressure field is proposed in terms of the 

grid-point values of pressure. Such a zig-zag field cannot be regarded as 

realistic; but, for any grid point P, the corresponding pw — Pg can be seen to 

be zero, since the alternate pressure values are everywhere equal. Thus, the 

devastating consequence is that such a wavy pressure field will be felt like a 

uniform pressure field by the momentum equation. 

The difficulty can be seen more dramatically in a two-dimensional 

situation. Just as the x-direction momentum is influenced by pw — Pe, the 

y-direction momentum is affected by Ps — py; then the pressure Pp has no 

role to play. With this in mind, we can conclude that the pressure field shown 

in Fig. 6.3, which is made up of four arbitrary values of pressure arranged in a 

p= 100 500 100 500 100 500 E E Zigzae promure field: 

Figure 6.3 Checkerboard pressure 

field. 
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checkerboard pattern, would produce no pressure force in the x or y 

direction. Thus, a highly nonuniform pressure field would be treated as a 

uniform pressure field by the particular discretized form of the momentum 

equations. Should such pressure fields arise during the iterative solution 

procedure, there would be nothing to stop them from being preserved till 

convergence, since the momentum equations would be oblivious to their 
presence. 

It should be noted that the actual numbers used in Figs. 6.2 and 6.3 do 

not have any particular significance; they simply indicate a pattern that can be 

constructed from any arbitrary numbers. It is easy to imagine that the 

three-dimensional situation would allow an even more complex pattern, which 

the momentum equations would still interpret as a uniform pressure field. 

If a certain smooth pressure field is obtained as a solution, any number of 

additional solutions can be constructed by adding a checkerboard pressure 

field to that solution. The momentum equations would remain unaffected by 
this addition, since the checkerboard field implies zero pressure force. A 

numerical method that allows such absurd solutions is certainly undesirable. 

6.2-2 Representation of the Continuity Equation 

A similar kind of difficulty arises when we try to construct the discretization 

form of the continuity equation. For the steady one-dimensional constant- 
density situation, the continuity equation is simply 

du 
Ss 0. (6.2) 

If we integrate this over the control volume shown in Fig. 6.1, we have 

Ue — uy =0. (6.3) 

Once again, the use of a piecewise-linear profile for u and of the midway 
locations of the control-volume faces leads to 

up + ug Uw +t up —P "E AW TP =O 7 7 (6.4) 

or ug — uw =Q. (6.5) 

Thus, the discretized continuity equation demands the equality of velocities at 
alternate grid points and not at adjacent ones. A consequence is that velocity 
fields of the type shown in Fig. 6.4, which are not at all realistic, do satisfy 
the discretized continuity equation (6.5). In two- and three-dimensional 
Situations, similar patterns for all the velocity components can be created; 
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u= 100 400 100 400 100 400 
DEON SOES o PSS 0-0 0 

———_ 

Figure 6.4 Wavy velocity field. 

they will satisfy the continuity equation but can hardly be accepted as 

reasonable or meaningful solutions. 

These difficulties must be resolved before a numerical method involving 

the velocity components and pressure can be formulated. In the literature, 

some methods can be found that pay no special attention to these difficulties. 

There, the possible unrealistic solutions are avoided by some special treat- 

ment at the boundaries, by overspecification of the boundary conditions, by 

underrelaxation with respect to a smooth initial guess, or by good fortune. 

But most such methods would accept pressure and velocity fields of the type 

shown in Figs. 6.2-6.4 as satisfactory solutions, and, in absence of special 

tricks, there is always the danger of arriving at such solutions. 

Before we proceed to describe a way out of these difficulties, it is 

interesting to note that the troublesome hurdles in numerical analysis seem to 

be associated with the first derivatives. The second derivative is always well 

behaved and creates no difficulties. On the other hand, all the complications 

encountered in Chapter 5 can be attributed to the first derivative representing 

the convection term; and here, the first derivatives of pressure (in the 

momentum equations) and of velocity (in the continuity equation) cause 

considerable nuisance. 

6.3 A REMEDY: THE STAGGERED GRID 

The difficulties described so far can be resolved by recognizing that we do not 

have to calculate all the variables for the same grid points. We can, if we wish, 

employ a different grid for each dependent variable. Of course, we would not 

exercise this freedom if there were no benefit to be derived. But, in the case 

of the velocity components, there is a significant benefit to be obtained by 

arranging them on grids that are different from the grid used for all other 

variables. The benefit is that the difficulties described in Section 6.2 will 

totally disappear. 

Such a displaced or “staggered” grid for the velocity components was first 

used by Harlow and Welch (1965) in their MAC method and has been used in 

other methods developed by Harlow and co-workers. It forms the basis of the 

SIVA procedure of Caretto, Curr, and Spalding (1972) and the SIMPLE 

procedure of Patankar and Spalding (1972a). 

In the staggered grid, the velocity components are calculated for the 

points that lie on the faces of the control volumes. Thus, the x-direction 
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Figure 6.5 Staggered locations 
for u. 

velocity u is calculated at the faces that are normal to the x direction. The 

locations for u are shown in Fig. 6.5 by short arrows, while the grid points 

(hereafter called the main grid points) are shown by small circles; the dashed 

lines indicate the control-volume faces. It will be noticed that, with respect to 

the main grid points, the u locations are staggered only in the x direction. In 

other words, the location for u lies on the x-direction link joining two 

adjacent main grid points. Whether the u location is exactly midway between 

the grid points depends upon how the control volumes are defined. The u 

location must lie on the control-volume face, irrespective of whether the latter 

happens to be midway between the grid points. 

It is easy to see how the locations for the velocity components v and w 
are to be defined. In Fig. 6.6, a two-dimensional grid pattern is shown, with 

Figure 6.6 Staggered locatiqns for 

u and v. > = u; t = v; o = other 
variables. 
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the locations for u and v placed on the respective control-volume faces. A 

corresponding three-dimensional pattern can be imagined in a straightforward 

manner. 

An immediate consequence of the staggered grid is that the mass flow 

rates across the control-volume faces (the F’s encountered in Chapter 5) can 

be calculated without any interpolation for the relevant velocity component. 

However, this feature, although it offers some convenience in setting up the 

general discretization equation for @, is not an important advantage of the 

staggered grid. 
The important advantages are twofold. For a typical control volume 

(shown shaded in Fig. 6.6) it is easy to see that the discretized continuity 

equation would contain the differences of adjacent velocity components, and 

that this would prevent a wavy velocity field, such as the one in Fig. 6.4, 

from satisfying the continuity equation. In the staggered grid, only “reason- 

able” velocity fields would have the possibility of being acceptable to the 

continuity equation. The second important advantage of the staggered grid is 

that the pressure difference between two adjacent grid points now becomes 

the natural driving force for the velocity component located between these 

grid points. Consequently, pressure fields such as those in Figs. 6.2 and 6.3 

would no longer be felt as uniform pressure fields and could not arise as 

possible solutions. 

The difficulties described in Section 6.2 can thus be attributed to the 

practice of calculating all variables for the same grid points; with the 

staggered grid, these difficulties are entirely eliminated. 

This freedom from difficulties has its own price. A computer program 

based on the staggered grid must carry all the indexing and geometric 

information about the locations of the velocity components and must perform 

certain rather tiresome interpolations. But the benefits of the staggered grid 

are well worth the additional trouble. 

6.4 THE MOMENTUM EQUATIONS 

We again remind the reader that, if the pressure field is given, the solution of 

the momentum equations can be obtained by employing the formulation 

completed in Chapter 5 for the general variable ¢. In the momentum 

equation, @ stands for the relevant velocity component, and I and S are to be 

given their appropriate meanings. The adoption of the staggered grid does 

make the discretized momentum equations somewhat different from the 

discretization equations for the other ¢’s that are calculated for the main grid 

points. But this difference is one of detail and not of essence. It arises from 

the use of staggered control volumes for the momentum equations. 

A staggered control volume for the x-momentum equation is shown in 

Fig. 6.7. If we focus attention on the locations for u only, there is nothing 
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Figure 6.7 Control volume for u. 

unusual about this control volume. Its faces lie between the point e and the 

corresponding locations for the neighbor u’s. The control volume is, however 

staggered in relation to the normal control volume around the main aid ši 

P. The staggering is in the x direction only, such that the faces normal to 

that direction pass through the main grid points P and E. This layout realizes 

one of the main advantages of the staggered grid: The difference pp — pg can 

be used to calculate the pressure force acting on the control volume for the 

velocity u. 

The calculation of the diffusion coefficient and the mass flow rate at the 

faces of the u control volume shown in Fig. 6.7 would require an appropriate 

interpolation; but essentially the same formulation as described in Chapter 5 

would be applicable. The resulting discretization equation can be written as 

lele = È agyUny + b + (pp — PE)Ae - (6.6) 

Here the number of neighbor terms will depend on the dimensionality of the 

problem. For the two-dimensional situation in Fig. 6.7, four u neighbors are 

shown outside the control volume; for a three-dimensional case, six neighbor 

u’s would be included. The neighbor coefficients a, account for the 
combined convection-diffusion influence at the control-volume faces. The term 

b is defined in the same manner as in Eq. (5.57) or (5.62), but the pressure 

gradient is not included in the source-term quantities Sc and Sp. The pres- 
sure gradient gives rise to the last term in Eq. (6.6). Since the pressure 

field is also to be ultimately calculated, it would be inconvenient to bury the 

pressures in the momentum source term. The term (pp—ppg)A x th 

pressure force acting on the u control volume, A, being the aes a wae the 

pressure difference acts. For two dimension i i s, Ae will ile in: 

three-dimensional case A, will stand for Ay Az j E A RA 
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Figure 6.8 Control volume for v. 

The momentum equations for the other directions are handled in a similar 

manner. Figure 6.8 shows the control volume for the y-direction momentum 

equation; it is staggered in the y direction. The discretization equation for Vy 

can be seen to be 

GnUn = È App Upp +D + @p-Pn)An; (6.7) 

where (Ppp—pPy)An is the appropriate pressure force. For the three- 

dimensional case, a similar equation for the velocity component w can be 

written. 
l 

The momentum equations can be solved only when the pressure field is 

given or is somehow estimated. Unless the correct pressure field is employed, 

the resulting velocity field will not satisfy the continuity equation: Such an 

imperfect velocity field based on a guessed pressure field p“ will be ee 

by u*, v*, w*. This “starred” velocity field will result from the solution o 

the following discretization equations: 

leug =2 Any Und +b+ (pp = pE)Ae > (6.8) 

nUn =2 AnbUnb +b+ (pp a PN)An ’ (6.9) 

` dw? = E agpway + b + (PB PTA. (6.10) 

In these equations, the velocity components and pressure have been given the 

genannten 
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superscript *. The location ft, it can be noted, lies on the z-direction grid line 

between the grid points P and 7. 

6.5 THE PRESSURE AND VELOCITY CORRECTIONS 

Our aim is to find a way of improving the guessed pressure p* such that the 

resulting starred velocity field will progressively get closer to satisfying the 

continuity equation. Let us propose that the correct pressure p is obtained 
from 

pap +p, (6.11) 

where p’ will be called the pressure correction. Next, we need to know how 

the velocity components respond to this change in pressure. The cor- 

responding velocity corrections u', v', w' can be introduced in a similar manner: 

u=u*+u' v=v* +v w=w* +w. (6.12) 

If we subtract Eq. (6.8) from Eq. (6.6), we have 

lele =2 anb Unb + (pp ~ pr)Ae . (6.13) 

At this point, we shall boldly decide to drop the term Ea buhe from the 
equation. An extensive discussion of this action will be presented in Section 
6.7-2. For the time being, it is best to pay no attention to this move or to 
regard it simply as a computational convenience. The result is 

2 

lelle = (pp E pr)Ae (6.14) 

or Ue = de(Pp — Pk), (6.15) 

where 

_A 
d,=—£. (6.16) 

ae 

Equation (6.15) will be called the velocity-correction formula, which can also 
be written as 

Ue = ue + de(pp — pg). (6.17) 

This shows how the starred velocity už is to be corrected in response ta the 
pressure corrections to produce ue. 
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The correction formulas for the velocity components in other directions 

can be written similarly: 

Un = Un + dn (Pp — py) , (6.18) 

w: = Wz + d,(pp — pr). (6.19) 

Thus, we now have all the preparation needed for obtaining a discretization 

equation for p’. It is to this task that we now turn. 

6.6 THE PRESSURE-CORRECTION EQUATION 

We shall now turn the continuity equation into an equation for the pressure 

correction. For the purpose of this derivation, we shall assume that the 

density p does not directly depend on pressure. Later, the implications of this 

assumption will be discussed. The derivation is given here for the three- 

dimensional situation; the one- and two-dimensional forms can easily be 

obtained. 

The continuity equation is 

dp , a(ou) , A(ev) , (ew) OP. y OPUS Ee eg. : 
dt ax oy ee (6:20) 

We shall integrate this over the shaded control volume shown in Fig. 6.9. 

(Only a two-dimensional view is shown for convenience.) The same control 

volume, it will be remembered, was used for deriving the discretization 

equation for the general variable $. For the integration of the term dp/dt, we 

Figure 6.9 Control volume for the 

continuity equation. 
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shall assume that the density pp prevails over the control volume. Also, a 

velocity component such as ue located on a control-volume face will be 

supposed to govern the mass flow rate for the whole face. In conformity with 

the fully implicit practice, the new values of velocity and density (i.e., those 

at time t + At) will be assumed to prevail over the time step; the old density 

pp (i.e., the one at time #) will appear only through the term dp/dt. 

With these decisions, the integrated form of Eq. (6.20) becomes 

(ep — pp) Ax Ay Az PP PP + [pile — (pu)w] Ay Az 

+ [(eu)n — (pv)s] Az Ax + [(ow), — (pw)s] Ax Ay =0. (6.21) 

If we now substitute for all the velocity components the expressions given by 

the velocity-correction formulas [such as Eqs. (6.17)-(6.19)], we obtain, after 

rearrangement, the following discretization equation for p’: 

apPp =agpg + awpwtanPy t+aspst+arppt+agpp +b, (6.22) 

where 

ag = Pede Ay Az, (6.23a) 

aw = Pwdy Ay Az, (6.23b) 

an = Pndn Az Ax, (6.23c) 

as = psd, Az Ax, (6.23d) 

ar = ptd Ax Ay, (6.23e) 

ap = p,d, Ax Ay, (6.23/f) 

ap =ap taw +ay tag tarp tag, (6.23g) 

p = PP — Pp) Ax Ay Az 
At 

+ [Cous ~ (Pv*)n] Az Ax + [(ow*), — (ow*),] Ax Ay (6.23h) 

+ [(ou*)y — (pu”)e] Ay Az 

Since the values of the density p will normally be available only at the main 
grid points, the interface densities such as pẹ may be calculated by any 
convenient interpolation. Whatever the method of interpolation, the value of 
Pe must be consistently used for the two control volumes to which :the 
interface belongs (see basic Rule 1 in Chapter 3). 
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It can be seen from Eq. (6.23h) that the term b in the pressure-correction 

equation is essentially (the negative of) the left-hand side of the discretized 

continuity equation (6.21) evaluated in terms of the starred velocities. If b is 

zero, it means that the starred velocities, in conjunction with the available 

value of (9p—pp), do satisfy the continuity equation, and no pressure 

correction is needed. The term b thus represents a “mass source,” which the 

pressure corrections (through their associated velocity corrections) must 

annihilate. a 

By now we have formulated all the equations needed for obtaining the 

velocity components and pressure. We are in a position to take an overall look 

at the entire solution algorithm. 

6.7 THE SIMPLE ALGORITHM 

The procedure that we are developing for the calculation of the flow field has 

been given the name SIMPLE, which stands for Semi-Implicit Method for 

Pressure-Linked Equations. We shall discuss the significance of the name a 

little later. The procedure has been described in Patankar and Spalding (1972), 

Caretto, Gosman, Patankar, and Spalding (1972), and Patankar (1975). 

6.7-1 Sequence of Operations 

The important operations, in the order of their execution, are: 

1. Guess the pressure field p*. 
: * 

2. Solve the momentum equations, such as Eqs. (6.8)-(6.10), to obtain u , 
* * 

v, w”. 

. Solve the p' equation. ae 

. Calculate p from Eq. (6.11) by adding p top’. l 

Calculate u, v, w from their starred values using the velocity-correction 

formulas (6.17)-(6.19). 

6. Solve the discretization equation for other ¢’s (such as temperature, 

concentration, and turbulence quantities) if they influence the flow field 

through fluid properties, source terms, etc. (If a particular ¢ does not 

influence the flow field, it is better to calculate it after a converged 

solution for the flow field has been obtained.) : 

7. Treat the corrected pressure p as a new guessed pressure p , return to step 

2, and repeat the whole procedure until a converged solution is obtained. 

ww 

6.7-2 Discussion of the Pressure-Correction Equation 

It will be recalled that in Section 6.5 we decided to drop the term Z anbtnb 

on our way to the velocity-correction formula (6.17). It is now time to 
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explain the motivation for this and to affirm that no ultimate harm is entailed 
by this action. 

1. If expressions such as @,p¥np were retained, they would have to be 

expressed in terms of the pressure corrections and the velocity corrections at 

the neighbors of un». These neighbors would, in turn, bring their neighbors, 

and so on. Ultimately, the velocity-correction formula would involve the 

pressure correction at all grid points in the calculation domain, and the 

resulting pressure-correction equation would become unmanageable. We would, 

in effect, be going toward the direct solution of the whole set of momentum 

and continuity equations—a route that we decided not to follow. The 

omission of the E a,yuUhp term enables us to cast the p’ equation in the same 
form as the general @ equation, and to adopt a sequential, one-variable-at-a- 

time, solution procedure. 

2. The words semi-implicit in the name SIMPLE have been used to 

acknowledge the omission of the term La,jpunp. This term represents an 

indirect or implicit influence of the pressure correction on velocity; pressure 
corrections at nearby locations can alter the neighboring velocities and thus 

cause a velocity correction at the point under consideration. We do not 

include this influence and thus work with a scheme that is only partially, and 

not totally, implicit. 

3. The omission of any term would, of course, be unacceptable if it 

meant that the ultimate solution would not be the true solution of the 

discretized forms of the momentum and continuity equations. It so happens 
that the converged solution given by SIMPLE does not contain any error 
resulting from the omission of Zappuny. In the converged solution, we 

acquire a pressure field such that the corresponding starred velocity field does 
satisfy the continuity equation. The details of the construction of the p’ 
equation then become irrelevant to the correctness of the converged solu- 
tion. i 

4. It is useful to focus attention on the operations during the “final” 
iteration, after which we are going to declare convergence. We have, as a result 
of all the previous iterations, come to possess a certain pressure field. Using 
this as p*, we solve the momentum equations to get u*, v*, w*. From this 
velocity field, we calculate the mass source b for the pressure-correction 
equation. Since this is going to be the final iteration, the value of b will come 
out to be practically zero for all the control volumes. Then, p' = 0 at all grid 
points will be an acceptable solution of Eq. (6.22), and the starred velocities 
and pressure will themselves be the correct velocities and pressure. Thus, the 
fact that the mass source b is zero everywhere is sufficient evidence that we 
have acquired the correct pressure field, and the actual solution of the p 
equation is not needed during the final iteration. Obviously, the converged 
solution is then uninfluenced by any approximations made in deriving fhe p 
equation—an equation that we really did not use in the final iteration. 

5. The mass source b thus serves as a useful indicator of the convergence 
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of the fluid-flow solution. The iterations should be continued until the value 

of b everywhere becomes sufficiently small. 

6. With this understanding, the pressure-correction equation can be seen 

to be merely an intermediate algorithm that leads us to the correct pressure 

field, but that has no direct effect on the final solution. As long as we get a 

converged solution, all formulations of the p' equation will give the same final 

solution. 

7. The rate of convergence of the procedure will, however, depend on the 

particular formulation of the p' equation. If too many terms are omitted, 

divergence may result. 

8. The pressure-correction equation derived in Section 6.6 is also prone 

to divergence unless some underrelaxation is used. Many different under- 

relaxation practices can be devised. A generally successful practice can be 

described as follows: We underrelax u*, vř, w“ (with respect to the previous 

iteration values of u, v, w) while solving the momentum equations [with a 

relaxation factor æ, introduced in Eq. (4.55), set equal to about 0.5]; further, 

we add only a fraction of p' to p*. In other words, instead of using Eq. 

(6.11), we employ 

p= p* + Gp p’ ; (6.24) 

with ap set equal to about 0.8. The task of Eq. (6.24) is to calculate p, which 

will be used as př in the next iteration, we can, in the interest of 

convergence, take any liberties in adjusting p*. (The values of the relaxation 

factors that are mentioned here, namely 2=0.5 and a, = 0.8, have been 

found to be satisfactory in a large number of fluid-flow computations. 

However, it is not implied that these values are the optimum ones or will even 

produce convergence for all problems. It should be recognized that matters 

such as the optimum relaxation-factor values are usually problem-dependent. 

Although experience from previous computations is helpful, new problems 

sometimes require different relaxation practices.) 

9. It will be noticed that during each iteration the velocities are not left 

in their starred condition but are corrected using the velocity-correction 

formulas. The resulting velocity field exactly satisfies the discretized con- 

tinuity equation, irrespective of the fact that the underlying pressure correc- 

tions are only approximate. Thus, the computations proceed to convergence 

via a series of continuity-satisfying velocity fields. This feature of SIMPLE has 

many advantages. A continuity-satisfying velocity field is likely to be more 

reasonable than the starred velocities. The use of underrelaxation with respect 

to these reasonable velocities helps in keeping the starred velocities also 

reasonable, and the mass sources small. Furthermore, the solution of the other 

equations in every iteration can be based on a flow field that satisfies a mass 

balance. To realize these advantages, one precaution is necessary: The velocity 

corrections should not be underrelaxed. 
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10. In the derivation of the p’ equation, we considered the density p as 

known; the effect of pressure on density was not included. This can be 

regarded as a further approximation in the p’ equation and justified in a 

similar manner. After all, this is the essence of any iterative method, which 

focuses attention on a few significant influences in the equation and regards 

many other quantities as tentatively known but to be recalculated for the 

next iteration. The density p is, in general, to be calculated from an 

appropriate equation of state. This may involve a dependence on temperature, 

concentration, and even pressure. As long as a converged solution can be 

obtained, our approximate p’ equation is sufficient. For highly compressible 

(especially supersonic) flows, however, the dependence of density on pressure 

is so significant that there is a strong possibility of divergence. For such 

situations, it is desirable to derive a “compressible” form of the p' equation. 

This derivation has been set aside as an exercise (Problem 6.6). 

11. It can be observed that the p’ equation is very much like the 

discretization equation for heat conduction. In the velocity-correction formula 

(6.15), the velocity correction u, can be regarded as a heat flux caused by the 

temperature difference pp — Dr. 
12. The conductionlike nature of the p’ equation implies that it does not 

exhibit one-way behavior in any space coordinate. It is well known that the 

influence of pressure is two-way or elliptic. The one-way behavior in 

boundary-layer flows is achieved by making an additional assumption about 

the pressure field; for example, the pressure variation normal to a wall is 

ignored in a wall boundary layer. Supersonic flows do exhibit one-way 

behavior in that the downstream pressure does not alter the upstream 

conditions, Computationally, we should use the compressible form of the p’ 

equation (Problem 6.6) for supersonic flows. The coefficients in this form are 

similar to those in our convection-diffusion formulation, and then they do 

imply one-way behavior under appropriate Mach-number conditions. 

It is interesting to note such close correspondence between theoretically 

established behavior and computational implications. 

6.7-3 Boundary Conditions 
for the Pressure-Correction Equation 

The momentum equations are special cases of the general ¢ equation, and 

therefore our general boundary-condition treatment applies to them as well. 

However, since the p’ equation is not one of the basic equations, some 

comments on the handling of its boundary conditions are appropriate. 

Normally, there are two kinds of conditions at a boundary. Either the 

pressure at the boundary is given (and the velocity is unknown) or the 
velocity component normal to the boundary is specified. 

Given pressure at the boundary. If the guessed pressure field p* is 

arranged such that at a boundary p* =PDeiven, then the value of p’ at the 
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Figure 6.10 Boundary control volume for 

the continuity equation. 

ary will be zero. This is then akin to the given-temperature boundary 
bound a 

condition in a heat-conduction problem. ae 

Given normal velocity at the boundary. If the grid is designed such that 

the boundary coincides with a control-volume face, the situation will anes 

the one shown in Fig. 6.10. The velocity ue is given. In the derivation = 

p' equation for the control volume shown, the flow rate across the are 

face should not be expressed in terms of ue and a corresponding correc = 3 

but in terms of ue itself. Then, pg will not appear, or ag Will be zero in the 

p' equation. Thus, no information about pg will be needed. 

6.7-4 The Relative Nature of Pressure 
or t 

The foregoing description of the p' boundary conditions leads to a subtle bu 

important issue. Let us consider a constant-density steady situation, in n 

the normal velocities are given at all boundary locations. Since a x 

pressure is specified and all the boundary coefficients such as 4g n n 

the p' equation is left without any means of establishing the absolute va n 

p'. The coefficients of the p' equation are such that ap = È anb ae 

(6.23g)]; this means that p' and p’ + C(C is an arbitrary constant) wou 

i i tion. 
l 

A pt ee however, presents no real difficulty. For such a problem (in 

which the density is unaffected by pressure), the absolute value of pressure— 

and hence of pressure correction—is not relevant at all; ony aram = 

pressure are meaningful, and these are not altered by an arbitrary es an 

added to the p' field. Pressure is then a relative variable, not an absolute one. 

ee acne ua 

asta Ot 
nM 
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If the absolute value of p' is not unique, would the computations 

converge at all? Fortunately, an iterative method of solving the algebraic 

equations does converge to a solution, the absolute value of which is decided 

by the initial guess. A direct method, however, would encounter a singular 

matrix and refuse to give a solution. The remedy then is to arbitrarily assign 

the value of p’ in one control volume and solve the p’ equations for the 

remaining control volumes. The same technique can be used in an iterative 

method, but letting p’ seek its own level gives faster convergence than insisting 

on a definite value at a certain point (see Problem 4.9). 

Another way of looking at the indeterminate p’ field is to note that the 

continuity equations for all the control volumes do not represent a linearly 

independent set. Since, in a properly specified problem, the given boundary 

velocities must satisfy overall mass conservation, the continuity equation for 

the last control volume does not convey any information that is not already 

contained in the continuity equations for all other control volumes. Thus, 
even if one of the control-volume equations is discarded (and the value of p’ 

is prescribed there), the resulting corrected velocity field would satisfy 
continuity for all control volumes. 

In many problems, the value of the absolute pressure is much larger than 
the local differences in pressure that are encountered. If the absolute values of 
pressure were used for p, round-off errors would arise in calculating differ- 
ences like pp — pg. It is, therefore, best to set p = 0 as a reference value at a 
suitable grid point and to calculate all other values of p as pressures relative to 
the reference value. Similarly, before the p’ equation is solved during each 
iteration, it is useful to start from p’=0 as the guess for all points, so that 
the solution for p' does not acquire a large absolute value. 

When the pressure at some boundary points is specified, or when the 
density depends on pressure, the indeterminancy of the pressure level does not 
arise. 

6.8 A REVISED ALGORITHM: SIMPLER 

The SIMPLE algorithm has been extensively used and has served well. For 
example, all the fluid-flow calculations to be presented in Chapter 9 were 
performed using this algorithm. However, in attempts to improve its rate of 
convergence, a revised version has been worked out. It is called SIMPLER, 
which stands for SIMPLE Revised (Patankar, 1979a). 

6.8-1 Motivation 

The approximation introduced in the derivation of the p’ equation, (the 
omission of the term Z anbunb) leads to rather exaggerated pressure correc- 
tions, and hence underrelaxation becomes essential. Since the influence of the 



132 NUMERICAL HEAT TRANSFER AND FLUID FLOW 

neighbor-point velocity corrections is removed from the velocity-correction 

formula, the pressure correction has the entire burden of correcting the 

velocities, and this results into a rather severe pressure-correction field. In 

most cases, it is reasonable to suppose that the pressure-correction equation 

does a fairly good job of correcting the velocities, but a rather poor job of 

correcting the pressure. 

To appreciate this argument, let us consider a very simple problem, one in 

which there is one-dimensional constant-density flow with the velocity given 

at the inlet boundary. It is easy to see that the velocity in this problem is 

governed only by continuity, and hence the continuity-satisfying velocity field 

obtained at the end of the first iteration will itself be the final answer. The 

predicted pressure, however, will be far from the final solution, owing to the 

approximate nature of the p’ equation. It would take many iterations before a 

converged pressure field were established, although the correct velocity field is 

obtained very early in the process. 

If we employ the pressure-correction equation only for the task of 

correcting the velocities and provide some other means of obtaining an 

improved pressure field, we construct a more efficient algorithm. This is the 

essence of SIMPLER. 

6.8-2 The Pressure Equation 

An equation for obtaining the pressure field can be derived as follows: The 

momentum equation (6.6) is first written as 

È applny + b 
ue = eg + de(pp — PE); (6.25) 

g€ 

where de has been defined in Eq. (6.16). Now we define a pseudovelocity &e 

by 

~ n Z Anny tb (6.26) 
e le 

It can be noted that e is composed of the neighbor velocities unb and 

contains no pressure. Equation (6.25) now becomes 

Ue = Ue + de(Pp — Pe) - (6.27) 

Similarly, we can write 

Un = Ôn + dn (Pp — Pr); (6.28) 

wr = We + dep — Pr). (6.29) 
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It is easy to see the similarity between these equations and Eqs. (6.17)-(6.19). 

Here, u, v, w appear in place of u*, v*, w™, and the pressure p itself takes the 

place of p’. It then follows that, if the derivation in Section 6.6 were worked 

out with the new velocity-pressure relations containing ù, ú, w, an equation 
for pressure would result. This can be written as 

apPp = 4gPe + dwPw t+ anPn t+ asPs + appr tagpg +b, (6.30) 

where 4g, 4w, ay, ag, AT, 4p, and ap are given by Eqs. (6.23a)-(6.23g), and b 
is given by 

p = @P — pp) Ax Ay Az 
At 

+ [(05), — (Pô)n] Az Ax + [Ñ —(pW),] Ax Ay. (6.31) 

+ [û)w Z (pte Ay Az 

It should be noted that the expression for b is the only difference between 

the pressure equation (6.30) and the pressure-correction equation (6.22). 
Expression (6.31) for b uses the pseudovelocities u, 0, w, while b for the p’ 
equation was calculated in terms of the starred velocities. 

Although the pressure equation and the pressure-correction equation are 

almost identical, there is one major difference: No approximations have been 

introduced in the derivation of the pressure equation. Thus, if a correct 

. Velocity field were used to calculate the pseudovelocities, the pressure 

equation would at once give the correct pressure. 

6.8-3 The SIMPLER Algorithm 

The revised algorithm consists of solving the pressure equation to obtain the 

pressure field and solving the pressure-correction equation only to correct the 

velocities. The sequence of operations can be stated as: 

1. Start with a guessed velocity field. 

2. Calculate the coefficients for the momentum equations and hence calculate 
ü, v, w from equations such as Eq. (6.26) by substituting the values of the 
neighbor velocities tnp. 

3. Calculate the coefficients for the pressure equation (6.30), and solve it to 

obtain the pressure field. 

4. Treating this pressure field as p*, solve the momentum equations to obtain 

5. Calculate the mass source b [Eq. (6.23h)] and hence solve the p' equation. 

6. Correct the velocity field by use of Eqs. (6.17)-(6.19), but do not correct 
the pressure. 

7. Solve the discretization equations for other ¢’s if necessary. E 

8. Return to step 2 and repeat until convergence. 
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6.8-4 Discussion 

1. It is easy to see that, for the one-dimensional problem discussed in Section 

6.8-1, the SIMPLER algorithm would at once give a converged solution. In 

general, since the pressure-correction equation produces reasonable velocity 

fields, and the pressure equation works out the direct consequence (without 

approximation) of a given velocity field, convergence to the final solution 

should be much faster. 

2. In SIMPLE, a guessed pressure field plays an important role. On the 

other hand, SIMPLER does not use guessed pressures, but extracts a pressure 

field from a given velocity field. 

3. If the given velocity field happens to be the correct velocity field, then 

the pressure equation in SIMPLER will produce the correct pressure field, and 

there will be no need for any further iterations. If, on the other hand, the 

same correct velocity field and a guessed pressure field were used to start the 

SIMPLE procedure, the situation would actually deteriorate at first. The use 

of the guessed pressure would lead to starred velocities that would be 

different from the given correct velocities. Then, the approximations in the p’ 

equation would produce incorrect velocity and pressure fields at the end of 

the first iteration. Convergence would take many iterations, despite the fact 

that we did have the correct velocity field at the beginning. 

4. Because of the close similarity between the pressure equation and 

the pressure-correction equation, the discussion in Section 6.7-3 about 

boundary conditions for the p’ equation is also relevant to the pressure 

equation. Furthermore, the relative nature of the pressure discussed in Section 

6.7-4 could have been described by reference to the pressure equation. 

5. Although SIMPLER has been found to give faster convergence than 

SIMPLE, it should be recognized that one iteration of SIMPLER involves 

more computational effort. First, the pressure equation must be solved in 

addition to all the equations solved in SIMPLE; and second, the calculation of 

ii, 0, w represents an effort for which there is no counterpart in SIMPLE. 

However, since SIMPLER requires fewer iterations for convergence, the 

additional effort per iteration is more than compensated by the overall saving 

of effort. 

6.9 CLOSURE 

In this chapter, we have completed the final step in constructing our 

numerical method. A number of miscellaneous, but important, topics still 

remain to be discussed. Although these could have been included in the first 

six chapters, they can be better appreciated at this stage, when the reader has 

a complete view of the procedure. The next chapter is devoted to these 

topics. 
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PROBLEMS 

6.1 A two-dimensional flow with constant density and viscosity is governed by 

u au au 2 z pôl ia opa du au) ap 

at ax ay ax? ay? ax” 

au a a? 2 

at ax ay əx? ay? ay ° 

and ou + H =0. 
əx əy 

Eliminate p from the first two equations by differentiating the first with respect to y and 

the second with respect to x and subtracting one from the other. Express the resulting 

equation with w as the dependent variable, where w, the vorticity, is defined by 

w = du/day — av/ax. Show that the result is 

dw dw dw dw å Pw 
p — + pu — + = C 

a Oe e y u + 

6.2 Define a stream function y as 

Show that y identically satisfies the continuity equation given in Problem 6.1. Further, 
use the definition of w in Problem 6.1 to show that 

a7y ary 
—> =w. 

əx? ay? 

6.3 dn the steady, one-dimensional, constant-density situation shown in Fig. 6.11, the 

velocity u is calculated for locations A, B, and C, while the pressure p is calculated for 

locations 1, 2, and 3. The velocity-correction formula is 

wut + (P — pipa, 
where the locations i and i + 1 lie on either side of the location for u. The value of d is 

2 everywhere. The boundary conditions are u4 = 10 and p, =0. If, at a given stage in 

the iteration process, the momentum equations give uR= 8 and ut = 11, calculate the 

values of p, and p,. Explain how you would obtain the values of p; and p, if the 
right-hand boundary condition were given as uç = 10 instead of p} = 0. 

6.4 A one-dimensional flow through a porous material is governed by clulu + dp/dx = 0, 

where ¢ is a constant. The continuity equation is d(uA)/dx = 0, where A is the effective 

Figure 6.11 Situation for Problems 6.3 and 6.4. 
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area for the flow. Use the SIMPLE procedure for the grid shown in Fig. 6.11 (where you 

may ignore point A) to calculate p,, ug, and uç from the following data: 

x, — x, =x, xXx, =2 

cpg = 0.25 cc = 0.2 Agp=5 Ac=4 p, = 200 p, = 38 

As an initial guess, set ug = uc = 15 and p, = 120. 

6.5 The one-dimensional flow in the nozzle shown in Fig. 6.12 can be described by 

dp d d 
mz (puA) = 0 and T (puA)u = —A Pa 

where A is the cross-sectional area. The given conditions are 

p = 1 everywhere A, =3 Ap=1 p, = 28 p, =0. 

Assume that the fluid upstream of point 1 has negligible momentum. Formulate the 

discretization equations for u and p’, and hence obtain the values of 44, ug, and p,. 
(Use the initial guesses puA = 5, so that uy =ż and upg = 5, and p, = 25. Employ 

appropriate underrelaxation if necessary.) 

6.6 Consider the steady, one-dimensional, compressible flow for which the continuity 

equation is d(pu)/dx = 0. With reference to Fig. 6.1, write the discretization form of this 

equation in terms of pg, Py, Ue, and uy, Further, assume the density-correction formula 

p =p" + Kp', which can be derived from the appropriate equation of state. Assuming a 

piecewise-linear profile for p’, derive the discretization equation for pressure correction. 

Hint: use the approximation 

pu =(p" + p')(u* +u’) ~ přu*ř + p'uř + přu'. 

Note that the resulting coefficients have a convective part and a diffusive part, and that 

there is a possibility that the coefficients may become negative when the Mach number is 

large. Can you suggest an upwindlike scheme to prevent the coefficients from becoming 

negative? 

6.7 A portion of a water-supply system is shown in Fig. 6.13. The flow rate Q in a pipe 

1 A 2 B 3 
OOO 

— 

x 

Figure 6.12 Grid points for Prob- 

lem 6.5. 
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Figure 6.13 Water-supply system considered in Problem 6.7. 

is given by Q =C Ap, where Ap is the pressure drop over the length of the pipe, and C is 
the hydraulic conductance. We have the following data: 

pi =2715 p, =270 p, = 0 Ps = 40 Or = 20 

C4 = 0.4 Cg = Cp = Cr = 0.2 Co=Ce=0.1. 

Find p,, Pe, QA, Op, Qc, Op, and Qp by the following procedure: Guess P, and p,. 
4 * Obtain Q* values based on the guessed pressures. Construct the pressure-correction 

equations and solve for p} and p,. Correct the guessed pressures and the Q* values. Do 
you need to iterate? Why? 



CHAPTER 

SEVEN 

FINISHING TOUCHES 

7.1 THE ITERATIVE NATURE 
OF THE PROCEDURE 

The calculation procedure described in this book is aimed at solving coupled 

nonlinear equations by an iterative scheme. At this point, we shall take an 

overall look at the iterative process. 

1. The iteration technique plays two different roles: 

a, Our equations are, in general, nonlinear and interlinked. We cast them into 

nominally linear form and calculate the coefficients from the previous- 
iteration values of the variables. 

b. The nominally linear algebraic equations for one dependent variable at a 

time are solved by an iterative method (such as the line-by-line method) 

rather than by a direct method. 

2. The iterative solution of the algebraic equations need not be taken to 

complete convergence, because we are, at any intermediate stage, working 

with only tentative coefficients. After the discretization equations have been 

iterated to a certain extent, one must return to the recalculation of the 

coefficients. A sense of proportion is appropriate here. After having spent a 

certain amount of effort on calculating the coefficients, we must extract a 

fairly good solution of the algebraic equations, but refrain from doing an 

excessive amount of work with coefficient values that we know well\to be 

only tentative. A direct solution method used for multidimensional problems 
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usually results in a disproportionately large amount of work spent in the 

equation-solving activity. 

3. A similar consideration has been used in Chapter 6 in choosing a 

sequential, rather than simultaneous, procedure for calculating fluid flow. The 

momentum equations and the pressure-correction equation are solved se- 

quentially. The alternative, which is commonly adopted in most finite-element 

methods for fluid flow, is to obtain a simultaneous solution of the linearized 

forms of the continuity equation and all the momentum equations. Such a 

simultaneous solution by a direct method requires large amounts of computer 

time and storage. Since the momentum equations are nonlinear, these large 

amounts of effort must be spent at every iteration. Further, the continuity 

and momentum equations may not be the only equations governing the 

situation. These equations are often coupled with the energy equation 

(through fluid properties and buoyancy forces), with the equations for 

turbulence parameters (through the turbulent viscosity), with the equations 

for chemical-species concentration, and so on. Obviously, it would not be 

practicable to attempt a simultaneous solution of all these equations; these 

additional equations would normally be solved in a sequential manner. Under 

these circumstances, the expenditure of large amounts of computing effort for 

the simultaneous solution of the continuity and momentum equations seems 

out of proportion. 

4. In the numerical method presented in this book, there is no funda- 

mental difference between solving a steady-state problem and performing one 

time step in an unsteady problem. In a steady problem, we start with guessed 

values for the variables @ and proceed to obtain the steady-state solution. For 

an unsteady situation, the problem is this: Given the values of ¢ at time ¢ and 

a guess for @ at t + At, find the values of @ at t+ At. As in the steady-state 

problem, we must perform a number of iterations at each time step for an 

unsteady problem. Further, many such time steps must be sequentially 

executed to cover the desired time period. 

5. Thus, the solution of an unsteady problem seems to involve an effort 

that is equivalent to the task of solving a succession of steady-state problems. 

This is partially true, but there is one consolation. For reasonable values of 

At, the known @ values at time £ can be used as a guess for the unknown ¢ 

values at time t + At. Since this is a relatively good guess (compared with a 

rather arbitrary guess, which one must make in a steady-state situation), only 

a few iterations are normally needed to obtain a converged solution for the 

time step. Sometimes, the number of iterations per time step can be as small 

as one. Thus, when a method for a nonlinear unsteady problem is claimed to 

be noniterative, it is, in fact, accepting the solution at the end of one iteration 

as a sufficiently converged solution for that time step. Such methods must 

employ rather small time steps, whereas the use of multiple iterations for a 

time step would allow larger values of At. 

6. Such a one-iteration-per-time-step method is sometimes used to obtain 

FINISHING TOUCHES 141 

the steady-state solution at the end of many time steps. Such time steps are 

truly iterations, with the unsteady term in the equations providing a kind of 
underrelaxation. 

7. A computer program that employs iteration within a time step should 

provide storage for the values of ¢ at time t and for the @ values at t+ At. A 

steady-state program, on the other hand, requires storage for only one set of ¢ 

values, which are continually overwritten until convergence is attained. 

8. The iterative technique greatly simplifies the construction of the 

numerical method and provides a way in which, at least in principle, one can 

handle any nonlinearity and interlinkage. Of course, the technique is of no 

value if a converged solution cannot be reached. It is useful at this stage to 

examine the prospects of convergence. 

a. The four basic rules (introduced in Section 3.4) have enabled us to obtain 

such discretization equations as would, for fixed values of the coefficients 
ensure convergence of the point-by-point or line-by-line solution procedure. 

b. If the coefficients do not remain fixed but change rather slowly, it seems 

reasonable that we shall still obtain convergence. A proper linearization of 
the source term and an appropriate underrelaxation of the dependent 

variables would, in general, slow down the changes in the variables and 

hence in the coefficients. 

c. In addition to the dependent variables, other quantities can be under- 

relaxed with advantage. For example, the density p is often the main link 

between the flow equations and the equations for temperature, concentra- 

tion, etc. An underrelaxation of p via 

P = new + (1 — a) Pod (7.1) 

would cause the velocity field to respond rather slowly to the changes in 

temperature and concentration. A diffusion coefficient F can be under- 

relaxed to restrain, for example, the influence of the turbulence quantities 

on the velocity field. The present value of T is then calculated from 

P= anew + (1 — @)P org - (7.2) 

Here, as in Eq. (7.1), a stands for the relaxation factor. Underrelaxation 

requires a to be positive but less than 1. The interlinkage between different 

variables often comes through the source term (for example, the buoyancy 

force in a momentum equation depends on temperature). We may decide 

to underrelax the source term via 

Sc = Seonew + (1 — )Se,o1d - (7) 

Even the boundary conditions can be underrelaxed. For example, ahot 
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wall or a rotating disc need not assume its final temperature or rotational 

speed right from the first iteration; the boundary value may be slowly 

adjusted, during the course of the iterations, to ultimately achieve the 

desired value. Thus, 

op = QQB given + (1 — &) OB, 014 - (7.4) 

Of course, the value of a appearing in Eqs. (7.1)-(7.4) need not be the 

same, nor is it necessary to use the same value for a for every grid point. 

d. It must be remembered that there is no general guarantee that, for all 

nonlinearities and interlinkages, we will always get a converged solution. 

The underrelaxation procedures that are introduced here have been found 

to be helpful in many cases, but special underrelaxation practices may be 

needed for special problems. In the absence of an unconditional guarantee, 

we can nevertheless derive hope from the fact that, for a large number of 

rather complex problems, it has been possible to get converged solutions. A 

sample of such solutions will be presented in Chapter 9, but many other 

problems have also been solved and published. 

9. As we have noted, an iterative process is said to have converged when 

further iterations will not produce any change in the values of the dependent 

variables. In practice, the iterative process is terminated when some arbitrary 

convergence criterion is satisfied. An appropriate convergence criterion 

depends on the nature of the problem and on the objectives of the 

computation. A common procedure is to examine the most significant 

quantities given by the solution (such as the maximum velocity, total shear 

force, a certain pressure drop, or overall heat flux) and to require that the 

iterations be continued only until the relative change in these quantities 

between two successive iterations is greater than a certain small number. Often 

the relative change in the grid-point values of all the dependent variables is 

used to formulate the convergence criterion. This type of criterion can 

sometimes be misleading. When heavy underrelaxation is used, the change in 

the dependent variables between successive iterations is intentionally slowed 

down; this may create an illusion of convergence although the computed 

solution may be far from being converged. A more meaningful method of 

inonitoring convergence is to examine how perfectly the discretization 

equations are satisfied by the current values of the dependent variables. For 

each grid point, a residual R can be calculated from 

R = Lagan ond + b — app - (7.5) 

Obviously, when the discretization equation is satisfied, R will be zero. A 

suitable convergence criterion is to require that the largest value of |R| be less 

than a certain small number. Incidentally, as mentioned in Section 6.7.2, the 
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quantity b in Eq. (6.22), which is the residual of the continuity equation, can 

be used as one of the indicators of the convergence of the iterative process. 

7.2 SOURCE-TERM LINEARIZATION 

In Section 4.2-5, the concept of the linearization of the source term was 

introduced. One of the basic rules (Rule 3) required that when the source 
term is linearized as 

S= Sc + Spop , (7.6) 

the quantity Sp must not be positive. Now, we return to the topic of 

source-term linearization to emphasize that often source terms are the cause 

of divergence of iterations and that proper linearization of the source term 

frequently holds the key to the attainment of a converged solution. 

7.2-1 Discussion 

l. It is important to watch for unintentional violations of the negative-Sp 

requirement. For example, in rôz coordinates, the momentum equation for Vg 

contains a source term —pV,Vg/r. It is tempting to express this as Sc= 0 and 

Sp =—pV,/r. However, if V, happens to be negative, this gives a positive value 

of Sp. A proper formulation would be 

E Ss. a / r V 
C r > | Oo; (7.7a) 

V, Se = -||™, || (7.76) 

where || Jj denotes the larger of the quantities listed within. 

2. It is always possible to make Sp equal to zero, and to set Sc=S 
However, this is often not desirable. The effect of a large negative Sp is müch 
like that of underrelaxation and is conducive to convergence. As described in 
Section 4.2-5, probably the best linearization is one that makes the straight 
line S=Sc + Spp a tangent to the true S~¢@ curve. To use a smaller 
magnitude of Sp is to fail to adequately anticipate the decrease in § with an 
increase in $. To use a larger magnitude of Sp is to be too cautious (which 
may at times be a good policy) and probably slow down the convergence. 

3. Because the source terms are often large, it is always useful to consider 
the extreme case in which the source term alone dominates the discretization 
equation. For such a case, we may write the discretization equation as 
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Sc + Spop ~ 0, (7.8) 

which leads to the solution 

past (1.9) 
Sp 

Here, @p denotes the limiting value of @p in the source-dominated situation. 

In Fig. 7.1, these ideas are graphically represented. If the value S pertains to 

a current value @p, the solution of the discretization equation will be the 

value ¢p, which corresponds to the point where the Sc + Spop line meets the 

abscissa. If Sp has a larger magnitude, ¢p will be closer to PP- A small 

magnitude of Sp would imply a larger change in ¢p from @p to dp. The 

underrelaxation effect of Sp is thus obvious. 

4. Sometimes, the source-dominated situation can be used to design the 

linearization such that @p remains within redsonable limits. Suppose that, for 

the current value @p, we desire that the next-iteration value of @p be close to 

a given value op. This can be arranged through the linearization 

S“$p awe (7.102) 
j dp — oP 

s* 

Gees ar (7.10b) 
P fpo 

The desired value @p should be determined from physical considerations. For 

example, let @ stand for the mass fraction m of a chemical species. By 

S= Sc + Spp 

P bp Figure 7.1 Solution in the 

op source-dominated situation. 
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definition, m; must lie between O and 1. At a current value my, if S* is 

positive, m; will increase and we may set m, as 1. For negative sS*, m, may be 

set equal to zero. We may wish to be even more conservative and require that 

in one iteration m; could move only halfway toward the physical limit. Thus, 

m, would be set as (m; + 1)/2 for positive S*, and as m;/2 for negative S*. 
Because all these considerations are based on the source-dominated limit, the 

next-iteration value will not be exactly op, since the other terms in the 

equation also influence it. Further, we are not controlling the ultimate 

solution for ¢p, but simply its progress through the successive iterations. We 

seek to avoid rapid changes and physically unrealistic values from arising 

during the iterative process. 

5. Normally, one is able to assign a known value of @ only at the 

boundary points. However, any desired value of @ can be arranged to be the 

solution at an internal grid point by setting Sc and Sp for that point as 

Sc = 10” $p desired ’ (7.11a) 

Sp = —10* , (7.11b) 

where 10°° denotes a number large enough to make the other terms in the 

discretization equation negligible. The consequence is that 

Sc + Spop 0 , (7.12) 

S 
op = 3 = @P desired - (7.13) 

P 

This procedure can be used to represent internal obstacles or islands in the 

calculation domain by inserting “internal” boundary conditions. 

7.2-2 Source Linearization 

for Always-Positive Variables* 

From the physical significance of certain dependent variables, we can conclude 

that their values always remain positive. Examples of such “always-positive” 

variables are mass fractions of chemical species, turbulence kinetic energy, 

turbulence length scale, and radiation fluxes in a flux model of radiation. 

*Eor many readers, this seemingly minor topic may turn out to contain the most 

valuable information in this book. In practical computations, it is quite common to 

encounter erroneous results such as negative mass fractions and negative turbulence 

kinetic energy. These have such a devastating effect on the rest of the calculation and on 

the success of the iterations that they must be prevented at all costs. Fortunately, 

prevention is possible and easy. 
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Since such quantities usually have both positive and negative source terms 

(ie., generation and destruction), the net source term can often become 

negative. If this is not properly handled, the always-positive variable may 

acquire an erroneous negative value. 

The basic rule about positive coefficients (Rule 2 in Section 3.4) is crucial 

to ensuring physically realistic results. A further requirement for always- 

positive variables is that Sc must always be positive (and, of course, Sp always 

negative). Strict adherence to this requirement guarantees that no negative 

values of @ will arise. 

There are many ways of ensuring that Sc is positive. A simple prescrip- 

tion is as follows: Suppose that 

S =S, — S2 Sı>0, S,>0, (7.14) 

where S, is the positive part of the source term, and —S. is the negative part. 

Since 

s=8,—*2 9, (7.15) 
op 

we set 

Sc = Si (7.16a) 

S2 
and Sp=—--% , (7.16b) 

gp 

where @p is the current value of @p. 

7.3 IRREGULAR GEOMETRIES 

We have developed our numerical method by using a grid in Cartesian 

coordinates. Since practical problems do not always fit neatly into such a 

coordinate system, it is necessary to discuss how the method can be applied 

to irregularly shaped domains. 

7.3-1 Orthogonal Curvilinear Coordinates 

Our use of Cartesian coordinates has been motivated mainly by convenience 

and ease of presentation. There is, however, no essential difficulty in working 

out the same numerical method in cylindrical or spherical coordinates or even 

in general orthogonal curvilinear coordinates. This was briefly illustrated in 

Section 4.6-2 for the r@ coordinates. More generally, one can employ an 
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Figure 7.2 Control volume in an orthogonal 

curvilinear grid. 

orthogonal curvilinear grid as shown in Fig. 7.2. In such a grid, the calculation 

of various lengths, areas, and volumes is not as straightforward as in a 

Cartesian grid, but otherwise all the practices developed for Cartesian grids are 

directly applicable. 
The orthogonal property of the grid is, however, essential for the 

application of the method. Since we calculate a diffusion flux across a 

control-volume face in terms of the @ values at two grid points, it is crucial 

that the face is normal to the line joining the two grid points. 

For an arbitrarily shaped domain, the construction of an orthogonal 

curvilinear coordinate system is itself a substantial task. Some procedures for 

doing this are now available [for example, Potter and Tuttle (1973)]. If the 
grid can be conveniently and economically constructed, then the use of 

orthogonal curvilinear coordinates is a viable method for handling irregular 

geometries. 

7.3-2 Regular Grid with Blocked-off Regions 

Sometimes a computer program written for a regular grid (such as the 

Cartesian grid) can be improvised to handle an irregularly shaped calculation 

domain. This is done by rendering inactive, or “blocking-off,’ some of the 

control volumes of the regular grid so that the remaining active control 

volumes form the desired irregular domain. Some examples are shown in Fig. 

7.3, where the shaded areas denote the inactive control volumes. It is obvious 

that the irregular boundary must be approximated by a series of rectangular 

steps, but often surprisingly good answers can be obtained from a rather crude 

representation of the boundary. 
The blocking-off operation consists of establishing known values of the 

relevant ¢’s in the inactive control volumes. If the inactive region represents a 
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True boundary Nominal boundary 

Figure 7.3 Blocked-off regions in a regular grid. 

stationary solid boundary, the velocity components in that region must be set 

equal to zero. If the region is to be regarded as an isothermal boundary, the 

known temperature must be established in the inactive control volumes. l 

There are two ways in which the desired values can be set in the inactive 

control volumes. One method is the use of large source terms, as described in 

Section 7.2-1. An alternative is available through our use of harmonic-mean 

T’s for the control-volume faces (Patankar, 1978), which was explained in 

Section 4.2-3. Since large discontinuities of T can be correctly handled, a very 

large value of T in the inactive zone would ensure that the value prescribed at 

the (nominal) boundary of the zone prevails over the entire inactive zone. 

Yet, the solution in the active zone will be unaffected by these large values of 

I. In particular, the velocities in the inactive zone can be set to zero by the 

use of a very large viscosity for the zone and a zero value of velocity at the 

inal boundary. 

ere a noted that, by these means, only rather simple boundary 

conditions can be handled at an irregular boundary. More complex boundary 

conditions would require modification of the source terms for the active 

control volumes adjacent to the true boundary. Also, the blocking-off method 

is somewhat wasteful of computer time and storage, since trivial computations 

must be performed for the inactive zone, and the results have to be stored. 

ir get Baile ani 
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Notwithstanding these considerations, the convenience of using a regular-grid 

computer program for any arbitrary geometry offers a significant advantage. 

A further spin-off of the harmonic-mean I’s is the ability to handle 

conjugate heat transfer problems, which will be discussed next. 

7.3-3 Conjugate Heat Transfer 

Let us consider the situation shown in Fig. 7.4. The fluid flows through a 

duct with an internal fin. The duct wail and the fin have finite thickness and 

moderate conductivity. The thermal boundary condition is known at the 

outer surface of the wall as, for instance, a prescribed temperature for that 

surface. The situation presents a conjugate heat transfer problem in that 

conduction in the solid and convection in the fluid must both be considered, 

with a proper matching at the fluid-solid interface. The calculation of separate 

solutions for the solid and fluid regions would require an involved iterative 

procedure for matching the interface condition. The harmonic-mean practice 

for T offers a much easier alternative that has been Hescribed in Patankar 
(1978). 

In this procedure, the problem is solved by using a calculation domain 

that includes both the fluid and solid regions, with the outer surface of the 

wall coinciding with the boundary of the domain. Thus, the boundary 

conditions for both the velocity and temperature fields can easily be 

supplied at the outer surface of the wall. The calculation procedure rests on 

our ability to handle a large step change in the value of T. When the velocity 

equations are solved, I’ for the grid points that fall in the fluid region is made 

equal to the viscosity of the fluid, while for the grid points lying in the solid 

region T is set equal to a very large number. This would ensure that the zero 

velocity specified at the outer surface of the wall would prevail throughout 

the solid region, and thus the fluid region would experience the correct 

boundary condition. 

T= Ty 

Figure 7.4 Conjugate heat transfer problem. 
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For solving the temperature equation, we specify the P field by em- 

ploying the true conductivities of the solid and of the fluid in their 

respective regions. The problem is solved as a convection-conduction 

problem throughout the entire calculation domain; but, since the velocities 

in the solid are zero, the Peclet number there would also be zero, and, in 

effect, a pure-conduction calculation would be performed in the solid region. 

The resulting solution would thus give us temperature distributions in the 

solid and in the fluid, and they would have been automatically matched at the 

solid-fluid interface. As far as our calculation is concerned, this interface is 

simply an interior location, which is treated like any other interface between 

two control volumes. 

7.4 SUGGESTIONS FOR COMPUTER-PROGRAM 

PREPARATION AND TESTING 

To perform practical computations, the numerical method must be embodied 

in a computer program. It takes an organized and dedicated effort to produce 

an efficient and error-free program. After a computer program has been 

developed and tested, it becomes a valuable tool for the analyst. It opens up a 

whole new world of possibilities for solving complex practical problems with 

relative ease. The following suggestions are offered for the benefit of the 

readers who wish to develop computer programs for their needs. 

1. The first step in the design of a ¢omputer program is to decide on the 

scope and limitations of the program. Will it handle two or three 

dimensions, Cartesian or cylindrical coordinates, uniform or nonuniform 

grids, constant or variable density, steady or unsteady problems? Too 

much generality makes the program voluminous and inconvenient to 

apply to simple problems. Too little generality restricts its use to a very 

few physical situations. Initially, it is probably best to develop a rather 

restricted version of the program with, however, a flexible framework so 

that the scope of the program can be easily enlarged. 

2. It is useful to distinguish between general operations (such as the calcula- 

tion of the coefficients and the solution of the discretization equations) 

and problem-dependent operations (such as the specification of I, Sc, Sp, 

and the boundary conditions for the relevant variables). The general 

operations should be programmed first and then tested with different 

problem specifications. 

3. When a computer program is developed, it must be thoroughly tested. A 

program that contains errors is like a faulty instrument; it is unrealiable 

and misleading. It is possible to construct error-free computer programs, 

in which the analyst-programmer can take pride. 

4. It is helpful to test separate parts of the program before the entire 

| 
| 
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assembly is put to work. For example, the subroutine for solving the 

discretization equations can be independently tested by supplying 

arbitrary values for the coefficients. 

5. Most of the initial testing can be based on only coarse grids. This saves 

computer time, and, since the resulting fields of @ contain only a few 

numbers, it is easy to examine and interpret them. At times, some of the 

surprising results can be checked by manual calculation. Even the 

coarse-grid solutions are expected to be physically realistic, since this 

criterion has been the guiding principle in this book. 

6. The control-volume approach ensures that the solution satisfies overall 

conservation over the calculation domain. Such overall balances provide a 

useful test of the computer program. In verifying overall balances, we 

must use the same profile assumptions as were used in constructing the 
discretization equations. Then, for a well-converged solution, overall 

conservation must be perfectly satisfied for any number of grid points. 

Alternatively, the overall balance may be taken as an indication of the 

satisfactoriness of the convergence of iterations. 

7. To confirm the internal consistency of the computer program, a number 

of tests can be undertaken. One of them is to check that the converged 

solution is independent of the initial guesses and the relaxation factors. 
8. The orientation of the coordinate system relative to the physical problem 

is, of course, arbitrary. The correctness of the computer program can be 

checked by solving the same problem by interchanging, for example, the 

x and y directions. 

9. When the boundary conditions imply that the solution will be 
symmetrical about a line (or a plane), it is sufficient to perform the 

computation for only one-half of the domain lying on one side of the 

+ symmetry line. For example, the flow in a parallel-plate channel can be 

computed by using a calculation domain that extends from one plate to 

the center line between the plates. While testing the computer program, 

however, we can choose the whole domain (from one plate to the other) 

as the calculation domain and check whether the computed solution does 

exhibit the expected symmetry,” and whether the solution in each half is 

identical to the one obtained by using half the region as the calculation 

domain. 

10. Suppose that the solution for a given problem is determined by the values 
of certain dimensionless parameters. For example, the Reynolds number 

Re =pUD/p may be the governing parameter. The solution for a 

*There are some situations in which even with symmetrical boundary conditions the 

solution may not be symmetrical. For example, jets in ducts (which are used in fluidic 

devices) or sudden enlargements in duct flows often result in unsymmetrical flow 

patterns. Obviously, such special situations are not to be used in testing the prograth for 
symmetry. 
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12. 

13. 

NUMERICAL HEAT TRANSFER AND FLUID FLOW 

specific value of Re can be obtained by setting, in the computer 

program, 

or U=1 D=1 =l p=Re, 

Re 
r = 10 U=5 =] D = — 

E k p 50’ 

or any other combination. The dimensionless outcome of the computed 

solution must be identical for all these combinations. This criterion can 

be used to verify the correctness of the computer program. 

The principle of superposition, which is valid for linear heat conduction 

problems, can be used to test the consistency of the computer program. 

According to the superposition principle, the solutions for two rather 

simple problems can be added to construct the solution for a more 

complex problem. The computer program can be used directly to obtain 

the solutions for all three problems, and then it can be verified that the 

solution for the complex problem is indeed the sum of the solutions for 

the two other problems. 

Limiting behavior under appropriate conditions provides a useful test of 

the computer program. A three-dimensional computer program can be 

employed to solve a two-dimensional problem to confirm that the 

computed solution is indeed two-dimensional. Computations for a duct 

flow should exhibit the expected fully developed behavior in the far- 

downstream region. A program for viscous flow should produce the 

inviscid solutions when the viscosity is set equal to zero. 

The tests described so far have been aimed at checking the qualitative 

behavior of the computed results. Quantitative checks are also necessary, 

not only to confirm the correctness of the program but also to indicate 

the accuracy obtainable (with a certain grid fineness. Comparison with 

available exact solutions provides a useful way of testing the accuracy of 

the numerical solution. It should be verified that as the grid is refined the 

error in the computed solution diminishes. Since most standard exact 

solutions either deal with rather simple problems or require the calcula- 

tion of infinite series involving special functions and eigenvalues, a 

method for constructing exact solutions is desirable. A convenient method 

is to propose a solution for ¢, to provide the distributions of L, p, and u, 

and then to obtain an expression for S in Eq. (2.13) by substituting the 

other quantities into the equation. With this expression for S as the given 

source term (and with the given variations of I, p, and u), the proposed 

solution for @ can be regarded as the exact solution. Indeed, any domain 

over which ¢ is defined can be chosen as the calculation domain, and the 
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values of @ obtained from the exact solution at the boundaries of this 

domain can be used as the required boundary conditions. 

Finally, published numerical solutions can be used to verify the correct- 

ness of a new computer program. For this purpose, the results of some of 

the illustrative applications presented in Chapter 9 will be useful. 



CHAPTER 

EIGHT 

SPECIAL TOPICS 

In this book so far, a general method has been developed for the calculation 

of fluid flow, heat transfer, and related phenomena. Although one-dimensional 

and two-dimensional situations were used for ease of derivation and visualiza- 

tion, the ultimate treatment has dealt with the unsteady three-dimensional 

situation. Also, although the concept of a one-way space coordinate has been 

introduced, all the derivations have been based on two-way (i.e., elliptic) 

behavior for ali the space coordinates. 

The idea of a one-way space coordinate is, however, a very useful one, 

and special procedures that take advantage of one-way behavior have great 

practical utility. A few such procedures will be outlined in this chapter. Also, 

a finite-element method that uses many of the principles developed in this 

book will be briefly introduced. This will serve to emphasize the basic 

similarity between the finite-difference and finite-element approaches, which 
are often presented as entirely different methods. 

This chapter is not intended as an exhaustive treatment of the topics 

chosen. The purpose of the chapter is to draw the attention of the reader to 

these special topics, which are closely related to the main theme of the book. 

With the background of this book and the cited references, the reader should 

be able to work out the required algebraic details. 

8.1 TWO-DIMENSIONAL PARABOLIC FLOW 

When a steady two-dimensional flow has one one-way space coordinate! it is 

called a two-dimensional parabolic flow. Such a flow has a predominant velocity 
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in the one-way coordinate, and hence the convection always dominates the 

diffusion in that coordinate. It is this feature that imparts the one-way 

character to the streamwise direction. Obviously, no reverse flow in that 

direction would be acceptable. A further requirement arises from the influence 

of pressure. It was indicated in Section 6.7-2 that pressure normally exerts 

two-way (or elliptic) influences. For the streamwise coordinate to be treated 

as one-way, the pressure variations in the cross-stream direction must be 

regarded as negligible. 

Examples of two-dimensional parabolic flows are plane or axisymmetric 

cases of boundary layers on walls, duct flows, jets, wakes, and mixing layers. 

The solution for such situations is obtained by starting with a known 

distribution of ¢ at an upstream station and marching in the streamwise 

direction. For every forward step, the distribution of @ in the cross-stream 

coordinate is calculated at one streamwise station. Thus, computationally only 

a one-dimensional problem needs to be handled, for which the TDMA can be 

used to solve the discretization equations. 

The solution of the momentum and continuity equations presents no 

special problem. The streamwise pressure gradient is assumed to be known. 

With this pressure gradient, the streamwise momentum equation is solved to 

yield the streamwise velocity. The cross-stream velocity is then calculated 

from the continuity equation. The pressure gradient for external flows comes 

from the pressure field in the external irrotational stream outside the 

boundary layer. For confined flows, overall mass conservation across the duct 

cross section is used to adjust the streamwise pressure gradient. No counter- 

part of SIMPLE or SIMPLER is needed for two-dimensional parabolic flows. 

Complete details and computer programs for two-dimensional parabolic 

situations are available in Patankar and Spalding (1970) and Spalding (1977). 

The calculation method described therein uses.a dimensionless stream function 

as the cross-stream coordinate, which provides a convenient way of expanding 

and contracting the width of the calculation domain in conformity with 

changes in the thickness of the boundary layer. 

8.2 THREE-DIMENSIONAL PARABOLIC FLOW 

If in a steady three-dimensional flow there exists one one-way coordinate, the 

flow can be characterized as a three-dimensional parabolic flow. Again, the 

conditions under which a space coordinate becomes one-way are the existence 

of a predominant unidirectional velocity in that coordinate; hence, negligible 

diffusion and absence of reverse flow in that direction; and negligible pressure 

variations in the cross-stream plane. 

Examples of ̀ three-dimensional parabolic situations are similar to their 

two-dimensional counterparts. The boundary layer over a skewed airfoil, the 

flow in a duct of rectangular cross section, and a jet issuing from a 

noncircular orifice are all three-dimensional parabolic flows. 
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Although the apparent difference between the two- and three-dimensional 
parabolic situations is slight, the solution procedure needed for three- 
dimensional parabolic problems is far more complex than that for two- 
dimensional parabolic flows. (The SIMPLE procedure, it is worth noting, was 
first formulated in connection with three-dimensional parabolic flows in 
Patankar and Spalding, 1972a.) The reason is that, after the streamwise 
velocity has been calculated from the streamwise momentum equation, the 
two cross-stream velocities cannot be obtained from the continuity equation 
alone. To determine how the flow distributes itself in the two cross-stream 
directions, both cross-stream momentum equations must be solved. The 
two-dimensional parabolic procedure, on the other hand, does not employ the 
cross-stream momentum equation. 

Because of the direct reference to cross-stream momentum equations, an 
assumption about pressure, which goes unnoticed in the procedure for 
two-dimensional parabolic flows, comes to the forefront in the three- 
dimensional parabolic procedure. This assumption is that the streamwise 
velocity is influenced by a cross-sectional mean pressure p, while the 
cross-stream velocities are “driven? by a pressure variation p over the cross 
section. This pressure “decoupling” is essential to the use of a parabolic 
procedure.* 

For external flows, the streamwise variation of p is obtained from the 
surrounding irrotational stream. In confined flows, the p variation is adjusted 
to satisfy overall mass conservation over the duct cross section. In a given 
forward step, once the streamwise velocity has been obtained with the 
appropriate streamwise gradient of p, the problem of calculating the two 
cross-stream velocities and the cross-sectional pressure distribution is almost 
identical to a two-dimensional elliptic problem, which can be solved by the 
use of SIMPLE or SIMPLER. The details can be found in Patankar and 
Spalding (1972a), which can be easily interpreted with the background 
provided by this book. 

8.3 PARTIALLY PARABOLIC FLOWS 

In some practical situations there exists a predominant flow direction, and yet 
the cross-stream pressure variation is not negligible. Thus, the pressure 
decoupling employed in the parabolic procedures is not appropriate for such 
flows. In all other respects, the solution can be obtained by marching from 
the upstream end of the domain to the downstream end, but the downstream 
effects are transmitted upstream via pressure. Such situations are called 

“The cross-sectional Pressure p could be regarded as a perturbation over thd mean 
pressure p. For the flow to be treated as parabolic, the pressure perturbation over a cross 
section should be small so that, in the streamwise momentum equation, no significant 
error is introduced by the use of the mean pressure Ď instead of the actual local pressure. 
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partially parabolic. Highly curved ducts, a jet in a cross stream, ducts with a 

rapid change of cross section, and rotating passages are examples of partially 

parabolic situations. The basic concept of this class of flows was presented by 

Pratap and Spalding (1975, 1976), and has been applied to a film-cooling 

situation by Bergeles, Gosman, and Launder (1976, 1978). 

In the partially parabolic calculation procedure, the pressure field is 

stored for the entire calculation domain, while all other variables are stored 

for only one or two marching stations. For a given pressure field, the 

marching procedure is employed just as in the fully parabolic situation, while 

an improved pressure field is obtained from a pressure-correction equation or 

a pressure equation. Many repetitions of the marching procedure are needed 

before a converged solution is obtained. 

Compared with the fully elliptic procedure, the fully parabolic procedure 

offers savings in both computer time and computer storage. The partially 

parabolic procedure saves storage, but the savings in computer time may not 

be appreciable. 

8.4 THE FINITE-ELEMENT METHOD 

8.4-1 Motivation 

The discretization method described in this book has, because of its use of 

regular grids, the appearance of a finite-difference method. In stress analysis, 

the finite-element method is much more commonly used than the finite- 

difference method; and, even in heat transfer and fluid flow, applications of 

the finite-element method have started appearing in increasing numbers. 

The finite-element method subdivides the calculation domain into 

elements, such as the triangular elements shown in Fig. 8.1. The discretization 

equations are usually derived by the use of a variational principle when one 

exists or by the Galerkin method, which is a special case of the method of 

weighted residuals. In the derivation, a “shape function” or profile assumption 

is used to describe how the dependent variable @ varies over an element. 

As explained in Section 3.2, the control-volume formulation is another 

special case of the method of weighted residuals. We also have used shape 

functions to describe the variation of @ between two grid points. It so 

happens that these shape functions have been locally one-dimensional; it is 

because of this feature that the grid lines are required to form an orthogonal 

net. 

From this viewpoint, the finite-element method should not be considered 

as a basically different method. Its extra power lies only in its ability to use 

an irregular grid. Although we have discussed in Section 7.3 some ways of 

adapting our discretization method to irregular geometries, there is no doubt 

that the triangular grids shown in Fig. 8.1 provide more flexibility in fitting 
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Figure 8.1 Examples of domain discreti- 
zation by triangular elements. 

irregular domains and in providing local grid refinement. The development of 

a satisfactory finite-element method for heat transfer and fluid flow seems 

highly desirable. 

8.4-2 Difficulties 

Although this potential of the finite-element method has been recognized for 

quite some time, certain difficulties have, until recently, blocked progress: 

1. The foremost difficulty concerns the upwind nature of convection. A 

straightforward application of the standard finite-element method would 

give a formulation that is very similar to the central-difference scheme; and 

we know too well that such a formulation can lead to physically unrealistic 

results. Something like the upwind or the exponential scheme is needed, 

but it is not clear how to adapt such a formulation to irregular grids. 

2. The use of staggered grids was possible because the grid lines were laid out 

along coordinate directions, and the velocity components in these direc- 

tions could be appropriately displaced. The need for something like a 

staggered grid is present in the triangular grid too; if all the variables were 

to be calculated for the same grid points, difficulties similar to those 

discussed in Section 6.2 would certainly arise. 

3. Most of the published applications of the finite-element method to fluid 

flow employ a direct simultaneous solution of the continuity equation and 

all the momentum equations to yield the velocity components and 
pressure. Since direct solutions are expensive, it is desirable to formulate a 
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SIMPLElike sequential—rather than simultaneous—solution of the momen- 

tum and continuity equations. 

4. For most fluid-flow-heat-transfer practitioners, the finite-element method 

still has a veil of mystery about it. The variational formulation, or even the 

Galerkin approach, does not have an easy physical interpretation. In 

conformity with the philosophy adopted in this book, it is desirable to 

produce a version of the finite-element method in which the physical 

meaning of the discretization equations can be readily understood. 

8.4-3 A Control-Volume-based 

Finite-Element Method 

The recent work of Baliga and Patankar (1979a, 1979b) has been successful in 

removing the aforementioned difficulties, and a finite-element method that is 

closely related to the discretization method described in this book has been 

formulated. The actual formulation was worked out for a two-dimensional 

situation, but care was taken to ensure that the extension to three dimensions 

can be made without the need for any further novelties. A brief description of 

the salient features of the method now follows. 

1. For the triangular grid the dependent variables are calculated for grid 

points that lie at the vertices of the triangles. The discretization equations are 

formed by the control-volume method; i.e., the differential equation is 

intergrated over the typical control volume shown in Fig. 8.2. The control 

volumes are constructed by joining the centroid of each triangle to the 

midpoints of the sides of that triangle. This construction of the control 

volume was earlier proposed by Winslow (1967). It can be seen from Fig. 8.2 

that the triangular elements adjacent to the grid point P accommodate 

portions of the control volume and the corresponding control-volume faces. 

The discretization equation is formed by adding the contributions of these 

elements to the integral conservation for the control volume. 

Figure 8.2 Control volume for the tri- 

angular grid. 
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2. A shape function describing the variation of ¢ over an element is 

needed to calculate the flux across the control-volume faces that fall within 
the element. The standard shape function for the triangular element is 

g=atbxt+ey, (8.1) 

where the constants a, b, c are expressed in terms of the three grid-point 

values of ¢. For convection-diffusion problems, this shape function would give 

results much like the central-difference scheme in finite-difference methods. 

Since these results do become physically unrealistic when the Peclet number is 

large, the shape function given by Eq. (8.1) is unacceptable. The alternative 

proposed by Baliga and Patankar (1979a) is the shape function 

= pUX 
=A + Reap +CY, (8.2) 

where U is the resultant velocity in the element, X is the coordinate pointing 

in the direction of the resultant velocity, and Y in the direction normal 

to it. The constants A, B, C are found in terms of the three values of @ at the 

vertices of the triangle. 

On the basis of the discussion of convection and diffusion in Chapter 5, 

the rationale for the use of the exponential function in Eq. (8.2) should be 
quite obvious. For low Peclet numbers, Eq. (8.2) reduces to Eq. (8.1), which 
is the appropriate shape function for conduction problems. It is through the 
shape function (8.2) that the spirit of the exponential scheme has been 
introduced into the finite-element method. 

In fact, the exponential shape function has achieved something more. 

Whereas the formulation in Chapter 5 uses locally one-dimensional representa- 

tion, Eq. (8.2) works with the resultant-velocity direction. Consequently, the 
finite-element method based on Eq. (8.2) produces much less false diffusion 
than does the formulation in Chapter 5. 

3. The issue of the staggered grid is handled by calculating the pressure 

Oo p, U,V, > 

x u,v, > . as 
Figure 8.3 Macrotriangles and 
subtriangles. 
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on a grid that is different from the grid used for all the other variables. The 

pressure is calculated at the vertices of “macrotriangles,” which are shown in 

Fig. 8.3 by small circles. Each macrotriangle is divided into four subtriangles. 

The subtriangles form the grid for the velocity components and all other 

variables except pressure. 

4. A sequential solution algorithm in the spirit of SIMPLER is formu- 

lated. The pressure equation and the pressure-correction equation are derived 

from the continuity equation written for a control volume defined by the 

macrotriangle. 

The control-volume-based finite-element method outlined here has under- 

gone relatively little testing, and certainly numerous refinements can be made. 

However, the method represents a logical and effective extension of our 

discretization method to triangular grids. 

a 

Dili een — — 

CHAPTER 

NINE 

ILLUSTRATIVE APPLICATIONS 

In this last chapter, we shall look at a few applications of the numerical 
method described in this book. The method has been extensively tested and 
applied to a variety of practical situations. A review paper (Patankar, 1975) 
written in the early days of the SIMPLE procedure contains a number of 
examples that were available at that time. Since then, many more applications 
have appeared in the literature. A partial list of the published applications of 
the method now follows. 

“ Two-dimensional elliptic situations involving fluid flow and heat transfer 
have been computed by Lilly (1976), Abdel-Wahed, Patankar, and Sparrow 
(1976), Moon and Rudinger (1977), Majumdar and Spalding (1977), Patankar, 
Liu, and Sparrow (1977), Durst and Rastogi (1977), Sparrow, Patankar, and 
Ramadhyani (1977), McGuirk and Rodi (1978), Patankar, Ramadhyani, and 
Sparrow (1978), Ganesan, Spalding, and Murthy (1978), Patankar, Sparrow, 
and Ivanović (1978), Sparrow, Patankar, and Shahrestani (1978), Sparrow, 
Baliga, and Patankar (1978), and Patankar, Ivanović, and Sparrow (1979). 

Issa and Lockwood (1977) have modified the basic calculation method to 
handle both subsonic and supersonic regions in a single domain. Turbulent 
reacting flow in two-dimensional furnaces has been computed by Khalil, 
Spalding, and Whitelaw (1975). Patankar and Spalding (1972b, 1974b) have 
used the three-dimensional elliptic procedure for situations involving 
turbulence, combustion, and radiation. Other three-dimensional elliptic 
problems have been solved by Caretto, Gosman, Patankar, and Spalding 
(1972), Patankar and Spalding (1974a, 1978), and Patankar, Basu, and Alpay 
(1977). 
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The method for three-dimensional parabolic flows has been applied to 

complex practical problems by Patankar, Rastogi, and Whitelaw (1973), 

Patankar, Pratap, and Spalding (1974, 1975), Patankar, Rafiinejad, and 

Spalding (1975), McGuirk and Rodi (1977), Majumdar, Pratap, and Spalding 

(1977), Rostogi and Rodi (1978), and DeJoode and Patankar (1978). 

A complete discussion of all these applications will not be attempted 

here. The aim of this chapter is to give the reader a feel for some applications 

and then leave the rest to the imagination. Since only a few applications 

would serve this purpose, it was convenient to choose them from the 

problems solved by the author and his co-workers. 

It is interesting to note that all the applications presented here have been 

worked out by the use of only three general-purpose computer programs. The 

three computer programs differ only in their dimensionality and parabolic- 

elliptic nature. The programs are respectively designed for (1) two-dimensional 

elliptic situations, (2) three-dimensional parabolic situations, and (3) three- 

dimensional elliptic situations. It is possible to arrange each program to handle 

either the Cartesian or cylindrical coordinate system. Of course, the adapta- 

tion of any of the programs to a particular problem requires the incorporation 

of appropriate mathematical models for the relevant physical processes (such 

as turbulence or chemical reaction) and the introduction of the problem 

specifications (such as geometry, fluid properties, and boundary conditions). 

Although this adaptation often represents a significant effort, the use of 

general-purpose computer programs still provides a great convenience. 

Among the eight examples presented in this chapter, those in Sections 

9.4-9.6 involve turbulent flow. The standard k-e model of turbulence 

(Launder and Spalding, 1974) is used in Sections 9.5 and 9.6, while a special 

version of the mixing-length model is employed in Section 9.4. The steam- 

generator problem in Section 9.8 employs the concept of distributed 

resistances for flow over a tube bundle. The remaining sections deal with 

laminar-flow situations. 

From the computational point of view, a two-dimensional elliptic problem 

is involved in the situations treated in Sections 9.2-9.4 and 9.7; the problems 

in Sections 9.1 and 9.6 employ the three-dimensional parabolic procedure; and 

Sections 9.5 and 9.8 illustrate the application of the three-dimensional elliptic 

procedure. All the situations are steady-state except the one in Section 9.3, 

where a moving-boundary unsteady problem is handled. 

9.1 DEVELOPING FLOW IN A CURVED PIPE 

The axisymmetric flow in a straight circular pipe is two-dimensional . in 

character. The flow in a curved pipe, however, exhibits a three-dimensional 

nature. The reason is that the centrifugal force acting normal to the main 

direction of flow causes a secondary flow pattern in the pipe cross section 
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R 

Figure 9.1 Secondary flow pattern in the cross section of a curved pipe [from Patankar, 

Pratap, and Spalding (1974)]. 

(Fig. 9.1). As a result, the point of maximum axial velocity shifts to the 

outside. 

The developing laminar flow in a curved pipe was calculated by Patankar, 

Pratap, and Spalding (1974). A representative sample of the results is 

presented in Fig. 9.2, in which the axial velocity profiles on two different 

diameters are shown at successive locations along a bend, which is situated 

downstream of a straight section of the pipe. The velocity profile thus starts 

as a parabolic one and gradually distorts to its fully developed shape in the 

curved pipe. The computed results are compared with the experimental data of 

Austin (1971); the agreement can be seen to be quite good. 

The paper presents many more results for flow and for heat transfer and 

compares them with experimental data. In a later study (Patankar, Pratap, and 

Spalding, 1975), the turbulent flow in curved pipes was computed by the use 

of a two-equation turbulence model. 

9.2 COMBINED CONVECTION 
IN A HORIZONTAL TUBE 

Patankar, Ramadhyani, and Sparrow (1978) have carried out a computational 

study of the fully developed laminar flow and heat transfer in a horizontal 

tube that is subjected to nonuniform circumferential heating. Two heating 

conditions, which are in evidence in the insets of Fig. 9.3, were considered. In 

one, the tube was uniformly heated over the top half and insulated over the 
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Figure 9.3 Average Nusselt numbers for the horizontal tube with nonuniform heating 

[from Patankar, Ramadhyani, and Sparrow (1978)]. 

bottom; in the other, the heated and insulated portions were reversed. 

The nonuniform heating gives rise to a buoyancy-induced secondary flow, 

which leads to significantly higher Nusselt numbers than those for pure forced 

convection. The effect is particularly pronounced for the bottom-heating case 

and for the larger Prandt number, as shown by the average Nusselt numbers 

plotted in Fig. 9.3. The abscissa is a multiple of the modified Grashof num- 

ber Gr* . 
Further insight into these results can be obtained from the isotherms and 

streamlines over the tube cross section. The results for bottom heating are 

presented in Fig. 9.4 for three different values of Gr*. In each cross-sectional 

representation, the isotherms are plotted on the left, and the streamlines on 

the right. The secondary flow caused by the nonuniform heating can be 

clearly seen. At the highest Grashof number, the streamline pattern is tather 

complicated, there being a tendency to form a “thermal” above the lowest 

Austin (1971) Plane AA 
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Figure 9.2 Development of axial velocity for the parameters K = 372 and R/a = 29.1 [from Patankar, Pratap, and Spalding (1974)}. 
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(c) 

(b) 

ta) 

Figure 9.4 Isotherms and streamline maps for bottom heating; Pr = 5, and the values of (4/m)Gr* are (a) 10, (b) 10°, and (c) 0.5 X 10” [from Patankar, Ramadhyani, and Sparrow (1978)}. 
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point in the cross section. The isotherms for this case exhibit a kind of stably 

stratified structure in the top half, tend to follow the contour of the tube in 

the bottom half, and indicate the rising thermal at the very bottom of the tube. 

9.3 MELTING AROUND A VERTICAL PIPE 

We shall now consider the situation shown in Fig. 9.5. A vertical pipe carrying 

a hot fluid is embedded in a solid that is at its fusion temperature. With only 

conduction heat transfer acting at the beginning, the meit layer has a uniform 

thickness. But natural convection soon becomes influential and causes the 

fluid at the top to be hotter than that at the bottom. This results in the 

inclined interface as shown, with the largest thickness of the melt layer at the 
top. 

A numerical solution for the situation described was obtained by 

Sparrow, Patankar, and Ramadhyani (1977). A grid in a transformed co- 

ordinate system was employed, which always fitted the everchanging and 

irregular shape of the melt region. In the unsteady solution, the interface was 

regarded as temporarily stationary during each time step; its position was 

readjusted before starting the next time step to account for the interface heat 
transfer. 

The time-dependent variation of the heat transfer rate at the pipe surface 
is shown in Fig. 9.6. For our purposes here, it is best to ignore the various 
parameters in the figure and concentrate on the trends. At early times, the 

situation is governed by conduction, which causes a decrease in heat transfer 

as the increasing thickness of the melt layer offers a greater resistance. This is 

| 
| 

I 

interface 

Figure 9.5 Melting problem [from Sparrow, Patankar, and Ramadhyani (1977)}. 
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Figure 9.6 Timewise variation of the pipe heat transfer rate [from Sparrow, Patankar, and 

Ramadhyani (1977)]. 

followed by an increase in the heat transfer rate that is brought about by the 

action of natural convection. At large times, the rate of heat transfer is seen 

to decrease again; by now, the melt region is so large that heat is carried only 

by the recirculating flow, which itself experiences growing resistance along the 

top wall. 

The natural convection in the melt region and the shape of the interface 

can be seen in Fig. 9.7 for three representative cases, for which the streamline 

patterns are shown. For the early-time case, the conduction-dominated melt 

region is nearly rectangular. The two other cases show the typical velocity 

patterns and interface shapes that result from significant natural convection. 

9.4 TURBULENT FLOW AND HEAT TRANSFER 

IN INTERNALLY FINNED TUBES 

A circular tube with longitudinal internal fins is considered to be an effective 

device for heat transfer enhancement. The fully developed flow and heat 

transfer in such a tube were computed by the use of a mixing-length model 

formulated for the cross-sectional geometry shown in Fig. 9.8. Complete 

details of the model and the resulting solutions are given in Patankar, 
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Ivanovié, and Sparrow (1979). It is sufficient to note here that the model 

calculates the local mixing length based on the distances of a point from both 

the fin surface and the tube wall, and that the turbulent viscosity is 

influenced by the velocity gradients in both the radial and circumferential 

directions. The model incorporates a single adjustable constant, which was 

x ao r 

To To To 

1.1 1.0 2.0 1.5 1.0 1.5 1.0 

1.0 1.0 1.0 

Z Z a 
H H H 

0.5 0.5 

0.7 

0 0 

(a) ib) (c) 

Figure 9.7 Representative flow patterns. The early situation is shown by (a), while 4b) and 

5 result from vigorous natural convection [from Sparrow, Patankar, and Ramadħyani 

1977)]. 
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Figure 9.8 Cross-sectional geome- 

try of an internally finned tube 

{from Patankar, Ivanovic, and 

Sparrow (1979)]. 

chosen to give good agreement with the experimental data for air flow 

reported by Carnavos (1977). 

Figure 9.9 shows the comparison of the predicted values of the Nusselt 

number and the friction factor with experimental data. In a way, the 

satisfactory agreement shown is not surprising, because the adjustable constant 

in the model was derived from the same experimental data. On the other hand, 

that the adjustment of a single constant is able to give good predictions for both 
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Figure 9.9 Comparison of predicted values of the Nusselt number and friction factor with 

the experimental data of Carnavos (1977) [from Patankar, Ivanovié, and Sparrow (1979)]. 
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Nu and f over a range of Reynolds numbers and for different numbers and 
heights of fins is a significant achievement of the model. 

9.5 A DEFLECTED TURBULENT JET 

A turbulent jet issuing from a circular orifice can be analyzed as a two- 

dimensional parabolic flow. However, when the jet is deflected by a stream 

normal to its axis, an interesting three-dimensional elliptic situation arises, as 

schematically shown in Fig. 9.10. Chimney plumes, flow under a V/STOL 

aircraft, and some film-cooling situations involve the deflected-jet configuration. 

Patankar, Basu, and Alpay (1977) obtained a numerical solution for the 

three-dimensional velocity field of the deflected jet on the basis of the k-e 

model of turbulence. Thus, in addition to the momentum and continuity 

equations, two differential equations for the turbulence quantities, namely the 

turbulence kinetic energy k and its dissipation rate e, were solved. The 

standard values of the empirical constants in the k-e model, as recommended 

by Launder and Spalding (1974), were used; they were not adjusted to 

procure better agreement with experimental data. 

The predicted position of the jet center line is shown in Fig. 9.11 for 

various ratios of the jet velocity to the mainstream velocity. Also shown are 

Figure 9.10 Deflected jet situation [from Patankar, Basu, and Alpay (1977)]. 
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Figure 9.11 Position of the jet centerline for different jet-to-mainstream velocity ratios 

[from Patankar, Basu, and Alpay (1977)]. 

the experimental data of Ramsey and Goldstein (1970), Keffer and Baines 

(1963), and Jordinson (1958). Within the experimental scatter, the agreement 

of the numerical predictions with the data can be judged as satisfactory. 

In Fig. 9.12, we compare the computed velocity profiles with the 

measured ones from Ramsey and Goldstein (1970). These are the profiles of 

the z-direction velocity along the central yz plane for four different values of 

z; the ratio of the jet velocity to the mainstream velocity is 2. Again, the 

agreement is reasonable. 

9.6 A HYPERMIXING JET WITHIN 

A THRUST-AUGMENTING EJECTOR 

A thrust-augmenting ejector is an arrangement for increasing the thrust of a 

primary jet by entraining secondary air from the atmosphere. It has possible 
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applications in V/STOL aircraft. Ordinary jets from slot nozzles require long 

mixing ducts to produce any significant thrust augmentation. Since such long 

ducts are unsuitable for practical aircraft applications, a hypermixing nozzle is 

used to accelerate the mixing process. Here we summarize the computational 

investigation of a hypermixing-jet ejector reported by DeJoode and Patankar 

(1978). 
The geometry of the hypermixing nozzle and the resulting flow field are 

shown in Fig. 9.13. The nozzle exit is divided into several segments. The flow 

issuing from these segments is given an upward or downward velocity 

component in an alternating fashion; this is shown schematically in the inset 

of Fig. 9.13. These alternate velocity components lead to the formation of 

streamwise vortices, indicated by the arrows on a cross-stream plane in the 

figure. Also shown are the profiles of the velocity in the main flow direction. 

The velocity maxima in front of adjacent segments can be seen to lie 

respectively above and below the center line, while in front of the dividing 

line between two segments the velocity profile has two peaks. 

Figure 9.13 Geometry and the flow field of a hypermixing jet [from DeJoode and Patankar 

(1978)]. 
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T 9.14 Configuration chosen for numerical prediction [from DeJoode and Patankar 
1978)]. 

For the situation chosen for computer analysis, the hypermixing jet was 
placed in a diffuser as shown in Fig. 9.14. The computation was performed by 
a marching procedure for the three-dimensional parabolic flow. The k-e model 
of turbulence, with the standard values of constants from Launder and 
Spalding (1974), was used. 

The comparison of predicted and measured velocity profiles is shown 
in Fig. 9.15. All the qualitative features of the flow field—such as the double 
peak between the elements, the appearance of a second peak at the 
mid-element location, and the merging of the two peaks at a far-downstream 
eee correctly predicted; the quantitative agreement is also fairly 
good. 

The pressure rise through the diffuser is considered as a convenient 
measure of the thrust augmentation achieved. The predicted pressure rise 
through the ejector is compared with the experimental data in Fig. 9.16. Once 
again, the agreement can be regarded as reasonable. 
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Figure 9.15 Comparison of predicted and measured velocity profiles. (a) x/t 

(b) x/t = 25; (c) x/t = 45 [from DeJoode and Patankar (1978)]. 
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10 20 30 40 50 Figure 9.16 Pressure rise in 
the diffuser [from DeJoode 
and Patankar (1978)]. ~| 

9.7 A PERIODIC FULLY 
DEVELOPED DUCT FLOW 

Let us now consider the calculation of the fluid flow and heat transfer for the 
configuration shown in Fig. 9.17. The situation is characterized by the 
repetition of an identical geometrical module, such as the transverse plates 
shown. Such configurations are common in heat exchangers and in heat 
transfer augmentation devices. It is easy to see that if the entire region, 
consisting of a large number of modules, were used as a calculation domain, 
the required computer storage and computer time would be truly excessive. A 
practical alternative is provided by recognizing that, beyond a certain develop- 
ment length, the velocity field will repeat itself module after module, and the 
temperature field also will exhibit a kind of similarity. It is, therefore, possible 
to calculate the flow and heat transfer directly for the typical module shown 

Figure 9.17 Transverse-plate array [from Patankar, Liu, and Sparrow (1977)}. 
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by dashed lines in Fig. 9.17, without having to deal with the entrance-region 
problem. 

The calculation for the module may at first sight appear to be burdened 
with a difficulty: We do not have known values of velocity, temperature, etc. 
at the upstream and downstream boundaries of the module. But further 
thought eliminates the difficulty. When the fluid leaves the module, it enters 
an identical next module. Therefore, the situation is conceptually the same as 
if the fluid leaving the module were (somehow) to reenter the same module at 
the upstream end. In this view, the upstream and downstream boundaries do 
not form boundary locations at all; all streamwise stations are as if arranged in 
an endless loop. 

This conceptual framework is sufficient to formulate the numerical 
solution, which is described in detail by Patankar, Liu, and Sparrow (1977). A 
representative solution for the module shown in Fig. 9.17 is presented in Fig. 
9.18 in the form of the streamlines. It can be noted that the flow has to take 
a rather tortuous path to get around the transverse plates. This leads to the 
large recirculation zone on the downstream side of each plate. The heat 
transfer calculation for the same situation with a Prandtl number of 0.7 leads 
to the Nusselt numbers plotted in Fig. 9.19. The higher Nusselt numbers on 

Separation streamline 

Figure 9.18 Predicted flow field for a Reynolds number of 1040 {from Patankar, Liu, and 

Sparrow (1977)]. 
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Figure 9.19 Predicted Nusselt numbers [from Patankar, Liu, and Sparrow (1977)]. 

the front face of the plates are caused by the impinging flow there, while the slow recirculation zone on the back face gives much lower values. The increase in the Nusselt number with the Reynolds number is, in itself, unlike the case of conventional thermally developed duct flows, for which the Nusselt number is independent of the Reynolds number. 

9.8 THERMAL-HYDRAULIC ANALYSIS 
OF A STEAM GENERATOR 

This last example is included here to illustrate two main points: that useful computations for realistic large-scale industrial equipment can now be made, and that the “distributed-resistance” concept can be effectively employed to 
analyze configurations such as heat exchangers, steam generators, condensers and cooling towers. 

The distributed-resistance concept is applicable to cases in which a fluid flows through an enclosure that is filled with numerous solid objects such as rods, tubes, or slats. The situation is then treated much like flow in porous media, with distributed sinks of momentum and sources or sinks of heat produced by the solid objects. The distributed resistance can be obtained from detailed computations such as the one in Section 9.7 or directly from empirical correlations for the appropriate configuration. 
The thermal-hydraulic analysis of a steam generator, which is described ,by 

Patankar and Spalding (1978), was carried out for the configuration shown in Fig. 9.20. The cylindrical shell is uniformly filled with tubes (which are not 
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shown in Fig. 9.20). The hot tube fluid rises upward in one half of the steam 

generator, turns through the U bend at the top, and flows downward in the 

other half. An economizer is housed in the lower part of the generator for the 

purpose of bringing the feedwater up to the saturation temperature. 

The numerical solution was carried out to obtain the three velocity 

components, the pressure, the enthalpy for the shell fluid, and the enthalpy 

(or temperature) of the tube fluid. For the situation considered, the tube fluid 

remained in the liquid phase throughout, and its mass flow rate was known 

from the inlet conditions. 

The computed velocity field on the central vertical plane is shown in Fig. 
9.21. The arrows denote the velocity vectors in both magnitude and direction. 

The general magnitude of the velocity can be seen to increase as the fluid rises 

in the steam generator; this is in response to the lower values of density in the 

upper part. The velocity field in the lower left-hand corner of the figure 

indicates the zig-zag flow path through the economizer. 

Figure 9.22 shows the steam-quality distribution on the central vertical 

plane. The lower left-hand corner is blank because the fluid in the economizer 

is mostly subcooled water. In general, the qualities on the right side (i.e., the 

“hot” side) are greater than those on the left side. This disparity is seen to 

exist all the way to the exit. 

Exit 

Tube 

support plate 

Baffles 

Economizer 
Figure 9.20 Steam-generator configura- 

tion. (The tubes are not shown; the 

figure is not drawn to scale; the hori- 

zontal dimension is shown enlarged by a 

factor of about 2.) [From Patankar and 

Cold side Hot side Spalding (1978).]} 

Feedwater 

ports 
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Figure 9.21 Shell-side velocity vectors Figure 9.22 Contours of steam quality 
on the vertical plane of symmetry [from on the vertical plane of symmetry [from 
Patankar and Spalding (1978)}. Patankar and Spalding (1978)]. 

9.9 CLOSING REMARKS 

In this book, we have developed a numerical method for heat transfer, fluid 
flow, and related phenomena; evolved a philosophy of numerical computation 
through physical understanding and insight; and presented illustrative examples 
of actual computations. Sufficient details of the method are given to enable 
teaders to write their own computer programs. The readers are also 
equipped with meaningful criteria with which to judge other methods’ The 
purpose of the book would be well served if each reader became an active 
practitioner of, and possibly an innovator in, the exciting field of numerical 
heat transfer and fluid flow. 
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convection-diffusion coefficient, Eq. (5.37); also used to 

denote area in Chapter 6 
coefficient in the discretization equation 

convection-diffusior coefficient, Eq. (5.37) 

x-direction body force, Eq. (2.11) 

constant term in the discretization equation 

specific heat 
diffusion conductance, Eq. (5.9) 

coefficient of the pressure-difference term, Eq. (6.16) 

flow rate through a control-volume face, Eq. (5.9) 

weighting factor, Eq. (4.34) 

length ratio, Eq. (4.6) 

generation rate of turbulence energy, Eq. (2.12) 

specific enthalpy in Chapter 2; heat transfer coefficient in 

Chapter 4 

inertia used for underrelaxation, Eq. (4.56) 

total (convection + diffusion) flux 

diffusion flux of chemical species / 

normalized flux, Eq. (5.35) 

thermal conductivity; also used to denote the turbulence 

kinetic energy, Eq. (2.12) 

mass fraction of the chemical species / 

Peclet number, Eq. (5.18); also used as a TDMA coefficient in 

Chapter 4 4. 

pressure 

pressure correction 
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TDMA coefficient 

heat flux 

residual, Eqs. (3.8) and (7.5) 
rate of generation of species / by chemical reaction, Eq. (2.2) 

radial coordinate 

general source term, Eq. (2.13) 

constant part of the linearized source term, Eq. (3.16) 

volumetric rate of heat generation, Eq. (2.5) 

coefficient of Tp (or ġp) in the linearized source expression, 

Eq. (3.16) 

temperature 

time 

x-direction velocity 

velocity vector 

pseudovelocity in the x direction, Eq. (6.26) 

velocity based on the guessed pressure p* 

viscous source term in Eq. (2.11) 

y-direction velocity 

similar to ù, u* 
weighting function, Eq. (3.9) 

z-direction velocity 

similar to ù, u* 
coordinates 

relaxation factor, Eq. (4.55) 
relaxation factor for pressure, Eq. (6.24) 
general diffusion coefficient, Eq. (2.13) 

diffusion coefficient for species /, Eq. (2.3) 

time step 

x-direction width of the control volume 

x-direction distance between two adjacent grid points 

similar to Ax, 5x 

similar to Ax, 5x 

turbulence dissipation rate, Eq. (2.12) 

viscosity 

density 

general dependent variable, Eq. (2.13) 

neighbor in the negative z direction, i.e., at the bottom 

control-volume face between P and B 

neighbor in the positive x direction, i.e., on the east side 

control-volume face between P and E 

neighbor in the positive y direction, i.e., on the north side 
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E Se eee 

Superscripts 

— 

* © 

Special symbol 

[A,B,C,...] 

control-volume face between P and N 

general neighbor grid point 

central grid point under consideration 
neighbor in the negative y direction, i.e., on the south side 
control-volume face between P and S 

neighbor in the positive z direction, i.c,, at the top 

control-volume face between P and T 

neighbor in the negative x direction, i.e., on the west side 

control-volume face between P and W 

new value (at time t + Af) of the dependent variable 

old value (at time f) of the variable 
previous-iteration value of a variable; also velocities based on a 
guessed pressure 

largest of A, B,C,... 
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